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Mount Slamet, located in Central Java, Indonesia, is a high-risk volcanic 
region where accurate land cover classification is essential for disaster 
mitigation and sustainable land management. However, satellite 
imagery in this area often suffers from haze and cloud cover, posing 
challenges to reliable classification. This study aims to develop an 
effective land cover classification model using Sentinel-2 imagery by 
addressing these visual distortions. The specific goal is to classify land 
cover into five classes—Forest, Settlements, Summit, RiceField, and 
River—using enhanced satellite images. A total of 1101 labeled images 
were processed through dehazing with Multi-Scale Fusion (MSF) and 
smoothing using a Guided Filter to improve image quality. The 
classification was performed using three Convolutional Neural Network 
(CNN) architectures: VGG-16, MobileNetV2, and DenseNet121. The 
main contribution of this study is the integration of a tailored 
preprocessing pipeline with CNN-based modeling for haze-affected 
mountainous satellite imagery. Among the models tested, MobileNetV2 
achieved the highest accuracy of 85.4%, outperforming DenseNet121 
(83.8%) and VGG-16 (82.3%). The results demonstrate the effectiveness 
of combining image enhancement techniques with lightweight CNN 
architectures for land cover classification in challenging environments 
with limited and imbalanced dataset. 
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1. INTRODUCTION 

Mount Slamet is one of a group of mountains located in western Indonesia, in a series of 
mountains on the island of Java [1]. Mount Slamet reaches an altitude of 3,432 meters above sea level 
and is located within the administrative regions of Pemalang, Brebes, Tegal, Banyumas, and Purbalingga. 
Mount Slamet has weak explosive and effusive eruptions, which tend to be less hazardous to the 
surrounding agricultural areas and settlements [2]. This has led to the conversion of land around the 
mountain into agricultural and settlement areas to meet the social and economic needs of the local 
population [3]. Reduction in land area and changes in its function can result in decreased water 
absorption capacity, increased erosion risk, and soil fertility degradation [4]. Mount Slamet has a forest 
area of 52,617 hectares, with the largest area in Banyumas Regency reaching 9,887.6 hectares. Over 11 
period from 2008years19, there was a reduction in forest land of approximately 913.96 hectares, or 
about 9.24% of the total forest area [5]. This change requires accurate monitoring to understand its 
impact on the ecosystem and land use. 

http://u.lipi.go.id/1466480524
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To understand the dynamics of land cover changes, accurate analysis through satellite image 
classification is needed. This technique allows for the identification and mapping of land cover based on 
spectral characteristics [6]. Satellite image classification is a process of grouping data into specific 
categories based on certain characteristics or features. This method can be used to map land cover or 
environmental changes based on the spectral values of satellite image pixels, using machine learning or 
deep learning algorithms [7][8]. 

Deep learning is an advancement from Artificial Neural Networks (ANN) with deeper and more 
complex networks. Convolutional Neural Network (CNN) is one of the deep learning algorithms 
commonly used for image analysis due to its ability to recognize patterns or objects from large image 
data sets [9][10]. This process involves breaking down the image into basic features like edges and blobs 
at the initial layers, and then representing more complex patterns in subsequent layers [11].  

This study aims to classify land cover in the Mount Slamet region, specifically Banyumas 
Regency, using Sentinel-2 satellite imagery. The research dataset consists of 1101 labeled data divided 
into five data classes. Before classification, preprocessing was performed using Multi-Scale Fusion (MSF) 
to remove haze effects (dehazing) from the images, resulting in clearer images while preserving the 
original colors [12], and Guided Filter, which is effective for noise removal, enhancing contrast, and 
preserving edge details (smoothing) (He et al., 2013). Additionally, to address the challenge of data 
imbalance, data augmentation was applied to expand the training data variation, thereby improving the 
performance and generalization of the model [13]. 

Classification was carried out using CNN architectures, such as VGG-16, MobileNetV2, and 
DenseNet, each selected for their ability to handle relatively small datasets. VGG-16 allows for complex 
feature extraction through strong transfer learning [14]. MobileNetV2 features an efficient architecture 
that adapts well to limited datasets [15]. DenseNet excels in optimizing feature information through 
dense connections between layers, significantly improving performance on smaller datasets [16]. 

To support this research, a literature review is provided to discuss various satellite image 
classification approaches and implementations of CNN architectures. Previous studies have shown the 
effectiveness of CNNs in various land cover classification applications, but their application to the local 
challenges of Mount Slamet, such as haze and clouds common in tropical mountain areas, has been less 
explored. 

Research conducted by Patrick Helber et al. used CNN algorithms with ResNet-50 architecture 
on the EuroSAT dataset, achieving an accuracy of 98.57% for land cover classification [17]. Geetha M. et 
al. implemented CNN architectures, including VGG16, ResNet34, and a custom model on Sentinel-2 
satellite imagery, with the custom model achieving the highest accuracy of 93.73% [18]. Mandicou B.A. 
et al. developed CNN models based on U-Net and FCN8 architecture for satellite image classification in 
the Senegal River Valley, with U-Net reaching the highest accuracy of 96.10% [19]. Sana Basheer et al. 
evaluated SVM and Maximum Likelihood algorithms on PlanetScope Super Dove sensor (PSB.SD) 
dataset, achieving the highest accuracy of 94.00% with SVM [20]. Smita Sunil Burrewar et al. used RCNN 
architecture on Sentinel-2 satellite imagery in the Nagpur region, India, achieving a very high accuracy 
of 98.86% [21]. 

Although various previous studies have demonstrated the success of satellite image 
classification using specific algorithms, the application of CNNs to satellite imagery with local 
characteristics—such as frequent haze, clouds, and terrain variability in the Mount Slamet region—
remains limited. This study contributes by integrating a specialized preprocessing pipeline (dehazing 
with Multi-Scale Fusion and smoothing with Guided Filter) with three CNN architectures (VGG-16, 
MobileNetV2, and DenseNet) to classify land cover in a fog-prone mountainous region using a small and 
imbalanced dataset. The contribution lies in addressing both visual noise and dataset limitations to 
improve classification performance in real-world tropical highland conditions. 
 
2. METHOD 

This study proposes an integrated framework for land cover classification using Sentinel-2 
satellite imagery, focusing on the Mount Slamet area in Banyumas Regency. The main contributions of 
this study lie in the preprocessing pipeline using Multi-Scale Fusion (MSF) and Guided Filter to reduce 
haze and noise, as well as the evaluation of multiple CNN architectures using a balanced training and 
validation scheme. All experiments were conducted in (IDE) Google Colab using Python and TensorFlow. 
Figure 1 illustrates the overall workflow of the proposed method. 
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Figure 1. Research Workflow Diagram  

2.1.   Data Collection 

The dataset was collected using the Google Earth Engine (GEE) platform by extracting Sentinel-
2 Level-1C imagery captured on May 5, 2024, over the Mount Slamet region in Banyumas Regency. The 
image acquisition process is illustrated in Figure 2. 
 

 

Figure 2. Image Acquisition Using Google Earth Engine 
 

Sentinel-2 provides 13 spectral bands with varying spatial resolutions (10 m, 20 m, and 60 m) 
[22]. In this study, we selected three bands corresponding to the visible RGB channels: Band 4 (Red), 
Band 3 (Green), and Band 2 (Blue), each with a spatial resolution of 10 meters. These bands were chosen 
for their effectiveness in visual interpretation and compatibility with common CNN input requirements. 
The visualization of the RGB channels is shown in Figure 3. 
 

 
Figure 3. Visualization of the Combination of 3 RGB Channels 

 
Next, the dataset is divided into five data classes: Forest, Settlements, Summit, RiceField, and 

River, with a total of 1101 data points. The distribution of data for each class can be seen in Table 1. A 
sample of the dataset that has been organized can be seen in Figure 4. 
 

http://u.lipi.go.id/1466480524
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Table 1. Data Distribution per Class 
Class Number of Samples 
Forest 380 

Settlements 390 
Summit 31 

RiceField 273 
River 27 

 

 
Figure 4. Sample Dataset 

2.2.   Preprocessing 

The preprocessing stage aims to enhance the quality of satellite images by reducing visual 
disturbances such as haze, clouds, and noise, making the data cleaner and ready for land cover 
classification [23][24]. Multi-Scale Fusion (MSF) and Guided Filter are employed in this process. 

2.2.1.  Multi-Scale Fusion (MSF) 

Multi-Scale Fusion (MSF) is used to eliminate haze effects (dehazing) to produce clearer images 
[12]. This method employs a single-scale approach with intensity control parameters and minimum 
transmission thresholds to generate haze-free images. The process preserves details and natural color 
quality through normalization and intensity adjustment [25]. The Multi-Scale Fusion equation is 
presented in Equation 1. 
 

𝐽𝑐(𝑥) =
𝐼𝑐(𝑥)−𝐴⋅(1−𝑡(𝑥))

𝑡(𝑥)
+ 𝐴 ⋅ (1 − 𝑡(𝑥)) (1) 

 

Where: 
𝐽𝑐(𝑥) : Haze-free image intensity at channel c 
𝐼𝑐(𝑥) : Original image intensity at channel c 
𝐴 : Atmospheric intensity 
𝑥 : Transmission at pixel 𝑥 

 
Multi-Scale Fusion (MSF) was chosen for its advantages in handling images with thin to 

moderate haze [12]. The strength of MSF lies in its ability to preserve the natural color and texture 
details of the image effectively. This is achieved through normalization and intensity adjustment 
processes, ensuring that areas with thin to moderate haze can be processed optimally without producing 
artifacts that compromise visual quality [26]. 

2.2.2.  Guided Filter 

Guided Filter is an effective image enhancement technique for removing noise, improving 
contrast, and preserving edge details in the image [27]. The equation for the Guided Filter can be found 
in Equation 2. 
 
𝑞(𝑥) = 𝑎(𝑥) ⋅ 𝐼(𝑥) + 𝑏(𝑥)  (2) 
 

Where: 
𝑞(𝑥) : Filtered image at pixel 𝑥 
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𝑎(𝑥) : Linear slope coefficient after smoothing 
𝑏(𝑥) : Linear bias after smoothing 
𝐼(𝑥) : Guiding image at pixel 𝑥 

2.3.   Augmentation 

Data augmentation is a technique used to increase the quantity and diversity of data in a dataset. 
It involves generating modifications of existing data, such as rotation, flipping, zooming, translation, 
scaling, and more [28]. In image classification, data augmentation is crucial for improving model 
performance, especially when training data is limited. For instance, horizontal flipping and rotation can 
help the model recognize objects from different perspectives [29]. Additionally, augmentation is also 
beneficial for addressing overfitting, a condition where the model fits the training data too closely but 
performs poorly on test data [30]. 

To address class imbalance and improve generalization, we applied augmentation techniques 
selectively based on the scarcity of samples per class. Augmentation is applied to the Summit and River 
classes, which have the fewest data points. The augmentation process includes mirror_horizontal, 
mirror_vertical, and rotated_180°. 

2.4.   Training Model 

The model was trained using three Convolutional Neural Network (CNN) architectures: VGG-
16, MobileNetV2, and DenseNet121. Each architecture was utilized through transfer learning by loading 
pre-trained weights from ImageNet. 

2.4.1.  VGG-16 Architecture  

VGG-16 is a Convolutional Neural Network (CNN) architecture consisting of 16 deep 
convolutional layers trained with pre-trained weights from ImageNet [31]. This architecture uses filters 
of the same size (3x3) that are effective for extracting basic image features, and small stride and overlap 
patterns to maintain spatial accuracy [32]. The VGG-16 architecture is shown in Figure 5. 

 
Figure 5. VGG-16 Architecture 

 
The VGG-16 architecture consists of a total of 13 convolutional layers and 3 fully connected 

layers, organized in a deep and uniform structure. The original input to the VGG-16 model is a 224 × 224 
× 3 RGB image, but in this study, input images were resized to 128 × 128 × 3 to accommodate 
computational constraints. The architecture is designed to extract hierarchical features from images 
through successive convolutional and pooling layers. 

Each convolutional layer applies a set of filters (with increasing depth in deeper layers), 
followed by ReLU (Rectified Linear Unit) activation functions to introduce non-linearity. These layers 
are grouped into five blocks, with each block followed by a max pooling operation that reduces the 

http://u.lipi.go.id/1466480524
http://u.lipi.go.id/1464049910
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spatial dimensions while retaining the most important features. As the image propagates through the 
network, the spatial resolution decreases from 128 × 128 to smaller dimensions, while the depth 
(number of feature maps) increases. 

After the convolutional blocks, the model flattens the output feature maps and passes them 
through a fully connected (Dense) layer with 256 neurons using ReLU activation. This is followed by a 
final Dense layer with a softmax activation function, whose output dimension matches the number of 
land cover classes (5 in this study), enabling multiclass classification. 

In terms of implementation, this study employed transfer learning by loading the VGG-16 base 
model with pre-trained ImageNet weights while excluding the top classification layers 
(include_top=False). All layers in the convolutional base were frozen (layer.trainable = False) to retain 
previously learned features and avoid retraining them, which helps prevent overfitting especially with 
relatively small datasets. Only the newly added top layers were trained. 

The model was compiled using the Adam optimizer with a learning rate of 1e-4, and categorical 
cross-entropy was used as the loss function, since the problem is a multi-class classification. To enhance 
generalization and prevent overfitting, early stopping was applied with a patience of 10 epochs, 
monitoring the validation loss. The model was trained for a maximum of 100 epochs, with the best-
performing weights on the validation set being restored automatically. 

Figure 5 provides a visual summary of the standard VGG-16 architecture, illustrating how 
spatial dimensions are progressively reduced while feature depth increases, and how the fully connected 
layers aggregate these features to produce class predictions. 

2.4.2.  MobileNetV2 Architecture  

MobileNetV2 is a CNN architecture specifically designed for mobile devices, offering a balance 
between accuracy and efficiency using the Inverted Residual block [15]. Each block expands the input 
image with larger convolutions and then compresses it before outputting, reducing parameters without 
sacrificing the quality of the recognized features [33]. The MobileNetV2 architecture can be seen in 
Figure 6. 
 

 
Figure 6. MobileNetV2 Architecture 

 
The MobileNetV2 architecture is a lightweight and efficient convolutional neural network 

designed for fast inference on resource-constrained environments. It is structured with an emphasis on 
computational efficiency while maintaining performance. In this study, input images of size 128 × 128 × 
3 were used, and MobileNetV2 was employed with pre-trained ImageNet weights while excluding the 
classification head (include_top=False). 

The architecture begins with an initial 3×3 convolutional layer with a stride 2, followed by a 
series of depthwise separable convolution blocks, which separate spatial and channel-wise processing. 
Each block applies a 3×3 depthwise convolution followed by a 1×1 pointwise convolution, significantly 
reducing computational cost. 

Central to MobileNetV2 is the use of inverted residual blocks, which expand the feature 
dimensions internally and then project them back to a lower dimension using linear layers. These blocks 
include skip connections that add the input to the output of the block in certain configurations, allowing 
for better gradient flow during training. 
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Following the convolutional backbone, the final feature map (typically of size 4×4×1280) is 
compressed using a global average pooling operation. In this implementation, however, the output is 
flattened and passed through a Dense layer with 256 neurons using ReLU activation, followed by a 
Dropout layer with a rate of 0.5 to reduce overfitting. The final output layer is a Dense layer with a 
softmax activation function, producing class probabilities corresponding to the number of land cover 
classes (5 classes). 

In terms of implementation, transfer learning was applied by freezing all layers in the base 
MobileNetV2 model (layer.trainable = False), allowing the network to retain useful pre-trained features 
from ImageNet while training only the added top layers. 

The model was compiled using the Adam optimizer with a learning rate of 1e-4, and categorical 
cross-entropy was used as the loss function, appropriate for multiclass classification. Training was 
performed for up to 100 epochs, with early stopping monitoring the validation loss and restoring the 
best-performing weights if no improvement was observed for 10 consecutive epochs. 

This implementation leverages the compact and efficient architecture of MobileNetV2 while 
adapting it through transfer learning and custom top layers to suit the specific satellite image 
classification task. 

2.4.3.  DenseNet121 Architecture  

DenseNet121 uses a Dense Connections approach where each layer is directly connected to all 
its preceding layers, allowing for more effective information flow throughout the network. This 
approach reduces the number of parameters needed to achieve high accuracy [16]. The DenseNet121 
architecture can be seen in Figure 7. 
 

 

 
Figure 7. DenseNet121 Architecture 

 
DenseNet121 is a convolutional neural network architecture designed to improve feature 

propagation and reduce the number of parameters by employing dense connectivity patterns. In this 
study, the architecture was implemented using an input image size of 128 × 128 × 3, adapted from the 
pre-trained DenseNet121 model trained on the ImageNet dataset and fine-tuned for satellite image 
classification. 

The architecture begins with an initial convolutional layer (3×3 kernel with stride 2) preceded 
by zero-padding, followed by a 3×3 max pooling layer to reduce the spatial resolution. The network is 
composed of four main dense blocks, each consisting of multiple convolutional layers (1×1 followed by 
3×3) that extract features. A key feature of DenseNet121 is its dense connections, where the output of 
each layer is concatenated with the outputs of all preceding layers within the same block. This dense 
connectivity enriches the feature representation and facilitates stronger gradient flow. 

Transition layers between the dense blocks include 1×1 convolution layers and 2×2 average 
pooling, which serve to compress feature maps and control the network's complexity. At the end of the 
final dense block, a global feature map of size 4×4×1280 is produced, which is flattened in the 
customized model. 

http://u.lipi.go.id/1466480524
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In the modified architecture, a fully connected layer with 256 units and ReLU activation is added 
to extract high-level representations, followed by a final Dense layer with softmax activation for 
classification into five land cover classes. To prevent overfitting and leverage prior knowledge, all layers 
of the base DenseNet121 model are frozen (trainable = False), allowing only the added top layers to be 
trained. 

The model is compiled using the Adam optimizer with a learning rate of 1e-4, and the categorical 
crossentropy loss function, which is suitable for multi-class classification tasks. Training is carried out 
for up to 100 epochs, with early stopping applied (patience = 10) to restore the best-performing weights 
based on validation loss. 

This implementation of DenseNet121 offers strong feature reuse, efficient parameter usage, and 
robust learning capabilities, making it well-suited for satellite image classification tasks with relatively 
small yet complex datasets. 

2.5.   Evaluation Model  

The confusion matrix is used in the model evaluation phase to assess the model's performance. 
It is a tool for evaluating the performance of a classification model by comparing the model's predictions 
to the actual values [34]. The matrix consists of four main components: 
 
1. True Positive (TP): Cases where the model predicts positive and it is actually positive. 

2. True Negative (TN): Cases where the model predicts negative and it is actually negative. 

3. False Positive (FP): Cases where the model predicts positive but it is actually negative. 

4. False Negative (FN): Cases where the model predicts negative but it is actually positive. 

For multiclass classification, this concept is extended to each class, where the diagonal values in 
the matrix represent correct predictions (TP), and other values indicate prediction errors [34]. Several 
important evaluation metrics can be derived from the confusion matrix, such as: 
 
1. Accuracy measures the percentage of correct predictions. The calculation for Accuracy is shown 

in Equation. 
 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
 (3) 

 
2. Precision measures the proportion of true positive predictions among all positive predictions. The 

calculation for Precision is shown in Equation 4. 
 

𝑃𝑟𝑒𝑐𝑖𝑠𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
 (4) 

 
3. Recall measures the model's ability to detect positive classes. The calculation for Recall is shown in 

Equation 5. 
 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (5) 

 
4. F1-Score is the harmonic mean of precision and recall. The calculation for F1-Score is shown in 

Equation 6. 
 

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑠𝑖𝑜𝑛×𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
 (6) 

 
These evaluation metrics were chosen because the dataset is imbalanced, with majority classes 

like Forest and Settlements having around 380 samples, while minority classes such as Summit and 
River have fewer than 35 samples. Accuracy alone can be misleading as it may favor majority classes. 
Precision and recall provide insight into the model’s ability to correctly identify each land cover type, 
especially the underrepresented ones, ensuring reliable predictions and comprehensive detection. The 
F1-score balances precision and recall, offering a single informative metric for overall model 
performance in this multi-class, imbalanced classification task. 
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3. RESULT AND DISCUSSION 

This study focuses on land cover classification of the Mount Slamet region using Sentinel-2 
satellite imagery and convolutional neural network (CNN) architectures, namely VGG-16, MobileNetV2, 
and DenseNet121. The primary problem addressed is the challenge of accurate classification across 
multiple land cover classes with imbalanced data distribution, particularly for underrepresented classes 
such as Summit and River. To overcome this, preprocessing, including cloud removal (dehazing) and 
data augmentation techniques, was applied, followed by a comprehensive evaluation of model 
performance. 

3.1.   Preprocessing 

The cloud removal (dehazing) process was performed using the Multi-Scale Fusion (MSF) 
method to eliminate haze and enhance the clarity of satellite images. Multi-Scale Fusion operates by 
estimating light transmission and applying pixel-level corrections to preserve the natural colors of the 
images. The results of the MSF process can be seen in Figure 8. 

 
Figure 8. Dehazing Process, (Top) Before (Bottom) After 

 
The Guided Filter is used to refine dehazed images by preserving object edges and reducing 

noise without eliminating important details. By combining MSF and the Guided Filter, satellite images 
achieve a higher level of clarity, enhancing accuracy in the land cover classification process. The results 
of the MSF and Guided Filter processes can be seen in Figure 9. 

 
Figure 9. Guide Filter Process, (Top) Before (Bottom) After 

Data imbalance among classes requires augmentation. Data augmentation is the process of 
creating additional data from the original dataset through various transformations to enhance diversity 
and size of the dataset [28]. Augmentation is applied to the Summit and River classes, which have the 

http://u.lipi.go.id/1466480524
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fewest data points. The augmentation process includes mirror_horizontal, mirror_vertical, and 
rotated_180°. The number of datasets after augmentation is 1275 data points, with details presented in 
Table 2. This augmentation is essential for enabling the models to learn representative features from 
minority classes and reduce bias toward majority classes. 

 
Table 2. Distribution of Data After Augmentation 

Class Number of Samples 
Forest 380 

Settlements 390 
Summit 124 

RiceField 273 
River 108 

 

3.2.   Evaluation Model 

The evaluation process involves splitting the dataset into two parts: training data and validation 
data. This split is automatically performed by the ImageDataGenerator function using the parameter 
validation_split=0.2, where 80% of the data is used for training and 20% for validation. The distribution 
of training and validation data is shown in Table 3. 

 
Table 3. Distribution of Dataset 

Data Number 

Training 1022 
Validation 253 

 
The training parameters used include the Adam optimizer with a learning rate of 0.0001, the 

categorical_crossentropy loss function for multi-class classification, and the training process was 
conducted over 100 epochs using EarlyStopping to halt training early.   

The training results showed that VGG-16 stopped at epoch 27, MobileNetV2 at epoch 28, and 
DenseNet121 at epoch 32. The VGG-16 model achieved an overall accuracy of 83.00%, with its best 
performance in the Summit class (f1-score 0.9057), despite having the fewest samples. However, the 
RiceField and River classes faced challenges with recall values of 0.5185 and 0.4762, respectively. 
Meanwhile, MobileNetV2 recorded the highest accuracy at 85.38%, excelling in the Forest (f1-score 
0.9259) and Summit (f1-score 0.9388) classes, though it still struggled with significant misclassifications 
in the RiceField and River classes. The DenseNet121 model achieved an accuracy of 83.79%, with a 
perfect f1-score of 1.000 in the Summit class, demonstrating its advantage in handling classes with a 
small number of samples. However, DenseNet121's performance declined in the Settlements (f1-score 
0.7586) and RiceField (f1-score 0.7333) classes, reflecting challenges in maintaining a balance between 
precision and recall in certain classes. The test results for each architecture are presented in Table 4. 
 

Tabel 4. Evaluation Results 

Model Accuracy Precision Recall F1-Score 

VGG-16 0.8300 0.8419 0.8300 0.8147 

MobileNetV2 0.8538 0.8546 0.8538 0.8486 

DenseNet121 0.8379 0.8438 0.8379 0.8371 

 
The performance comparison of various models based on four key evaluation metrics: Accuracy, 

Precision, Recall, and F1-Score is presented in Figure 10. 
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Figure 10. Comparison of Each Model's Performance 

3.2.   Discussion 

Similar studies have been conducted by Geetha et al., [18], who implemented CNN architectures 
such as VGG-16, ResNet34, and a custom model on Sentinel-2 satellite imagery in the Davanagere 
District. Their dataset consisted of 18,000 images evenly distributed across six classes, yielding high 
accuracies—90.7% with VGG-16, 91.5% with ResNet34, and 93.73% with a custom model. In contrast, 
this study focuses on land cover classification in the Mount Slamet region, which presents distinct 
challenges, including limited and imbalanced data, as well as varying haze levels due to mountainous 
conditions. Despite these constraints, the CNN models used in this study—VGG-16, MobileNetV2, and 
DenseNet121—achieved respectable accuracies of 83.0%, 85.4%, and 83.8%, respectively. 

These results demonstrate that with appropriate preprocessing (MSF and Guided Filter) and 
targeted augmentation, CNNs can still perform well in complex and limited data scenarios. The strong 
performance in the Summit class across all models further suggests the potential of CNNs to generalize 
even in low-sample situations when preprocessing is handled properly. 

However, several limitations should be noted. First, the dataset was relatively small compared 
to similar studies, which may limit the generalizability of the findings. Second, while augmentation helps 
mitigate class imbalance, it may not fully represent the natural variability within underrepresented 
classes. Additionally, only three CNN architectures were explored, all of which were pre-trained models 
without fine-tuning for domain-specific features. 

Future research could expand the dataset both in size and geographic diversity, explore more 
advanced or hybrid architectures, and integrate temporal features to analyze seasonal changes. 
Incorporating semantic segmentation or object detection approaches could also provide more detailed 
spatial classification results beyond image-level predictions. 

 
4. CONCLUSION 

This study proposed a land cover classification approach for Sentinel-2 satellite imagery over 
the Slamet Mountain region using Convolutional Neural Network (CNN) architectures, addressing key 
challenges such as haze interference and class imbalance. To mitigate these issues, preprocessing 
techniques were applied, including Multi-Scale Fusion (MSF) for haze removal and a Guided Filter for 
image smoothing. Three CNN architectures—VGG-16, MobileNetV2, and DenseNet121—were trained 
and evaluated. 

The experimental results demonstrated that MobileNetV2 achieved the highest accuracy of 
85.4%, followed by DenseNet121 (83.8%) and VGG-16 (83.0%). These results highlight MobileNetV2's 
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capability to effectively handle imbalanced data and visual degradation caused by haze. Furthermore, 
the applied preprocessing methods significantly enhanced image quality, particularly for classes with 
limited sample sizes, and contributed to overall classification accuracy. 

The main contribution of this study lies in integrating haze reduction and CNN-based 
classification for satellite imagery in mountainous regions, which are typically more challenging due to 
atmospheric and topographic variability. This demonstrates the effectiveness of combining image 
enhancement techniques with lightweight deep learning models for remote sensing applications in 
complex environments. 

For future research, it is recommended to expand the dataset both spatially and temporally, 
adopt generative augmentation techniques such as GANs to address class imbalance, and explore more 
advanced CNN architectures or hybrid architectures. Additionally, incorporating semantic segmentation 
approaches could further improve spatial precision in land cover classification tasks. 
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