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Timely graduation prediction is a crucial issue in higher education,
especially when academic, demographic, and behavioral factors interact
in complex ways. However, many previous studies rely on default
machine learning (ML) parameters and fail to consider the class
imbalance problem, leading to suboptimal predictions. This study aims
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to build a comprehensive framework to evaluate the effectiveness of
seven ML algorithms, which are AdaBoost, K-Nearest Neighbors, Naive
Bayes, Neural Network, Random Forest, SVM-RBF, and XGBoost, for

predicting graduation on time by incorporating five resampling
techniques and hyperparameter tuning. Resampling methods include
Random Undersampling (RUS), Random Oversampling (ROS),
SMOTENC, and two hybrid approaches (RUS-ROS and SMOTENC-RUS).
Hyperparameter tuning was conducted using Grid Search, and model
performance was evaluated through cross-validation and hold-out
methods. The results show that Random Forest combined with RUS-ROS
achieved the best performance, with an average metric score of 0.948.
Statistical analysis using PERMANOVA (p = 0.009) and Bonferroni's
post-hoc pairwise tests confirmed significant differences between
certain models. This study contributes to the educational data mining
literature by demonstrating that combining resampling and
hyperparameter tuning improves classification performance in
imbalanced educational datasets.
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1. INTRODUCTION

A main challenge for universities is to deeply analyze their performance, identify institutional
uniqueness, and build development strategies to achieve future academic targets [1]. In an increasingly
complex and competitive educational environment, student academic success, particularly Graduation
on Time (GOT), has become a key metric for evaluating institutional performance [2]. However,
predicting GOT is inherently difficult due to the complex interplay between academic, demographic, and
behavioral factors. Traditional statistical models often lack the flexibility to capture these interactions,
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prompting a shift toward machine learning (ML) approaches that can process large and diverse
educational datasets [3], [4].

Machine learning has shown promise in educational contexts, especially for predicting student
outcomes such as academic achievement, dropout risk, and graduation likelihood [5]. As more data
becomes available from student information systems, learning management platforms, and
administrative records, the ability to develop accurate and proactive prediction models is increasingly
valuable for higher education institutions. Yet despite widespread ML adoption in Educational Data
Mining (EDM), several methodological limitations persist in the literature.

Many prior studies rely on default ML parameters without conducting proper hyperparameter
tuning, which limits the models’ potential performance. In addition, class imbalance is a recurring issue
in GOT datasets, where the number of on-time graduates typically far exceeds that of delayed graduates.
Models trained on such data often become biased toward the majority class, resulting in poor predictive
performance on minority cases. These issues are further compounded by the limited use of robust
evaluation methods; most studies rely on a single metric, such as accuracy, and few apply multivariate
statistical significance testing to validate model differences.

To address these limitations, this study proposes a comprehensive evaluation framework for
GOT prediction by combining multiple machine learning algorithms, five data resampling techniques,
and systematic hyperparameter tuning using grid search. Unlike previous research, this study evaluates
model performance across five key metrics, which are accuracy, precision, recall, F1-score, and AUC,
using both cross-validation and hold-out validation. It also introduces a statistical significance testing
procedure through Permutational Multivariate Analysis of Variance (PERMANOVA) and Bonferroni's
post-hoc pairwise comparisons test to determine whether performance differences are statistically
significant.

By integrating these components, this study contributes a holistic and statistically grounded
framework to the EDM literature. The findings not only identify the most effective combination of
algorithm and resampling strategy for GOT classification but also offer practical guidance for educational
institutions in developing reliable, data-driven approaches to support timely student graduation.

2. RELATED WORK

The application of machine learning (ML) in predicting Graduation on Time (GOT) has received
growing attention in the field of Educational Data Mining (EDM). For instance, a study by [6] in 2019
introduced an Artificial Neural Network (ANN), which demonstrated promising performance for GOT
classification. Other researchers have explored the use of Naive Bayes (NB), achieving an accuracy of
86.63%, making it a technique that remains relevant to this day [7], [8], [9], [10], [11], [12], [13], [14]. In
2020, [15] employed K-Nearest Neighbor (KNN) with k-fold cross-validation and reported
improvements in prediction accuracy. More advanced models, such as Support Vector Machine (SVM)
[16] and Random Forest (RF) [17], have also shown high accuracy in predicting GOT, while ensemble
methods like AdaBoost [18] have exhibited potential for further enhancing model performance.

In addition to evaluating individual models, several studies have compared ML algorithms for
GOT prediction across different performance metrics. For example, [19] compared NB and ANN,
revealing the superiority of ANN with an accuracy of 77.04%. In a subsequent study, [20] reported that
SVM outperformed both RF and NB, highlighting the importance of selecting an optimal number of k-
folds, typically between 5 and 20. Similarly, [21] found that ANN achieved higher accuracy than NB
(81.82%). More recently, studies from 2021 to 2024 [22], [23], [24] have consistently demonstrated that
RF outperforms other algorithms, including SVM and NB, in terms of overall predictive accuracy and
Area Under the Curve (AUC). Meanwhile, [25] and [26] confirmed that SVM remained competitive,
achieving up to 96.34% accuracy in 2023. On the other hand, [27] and [13] offered further support for
RF, concluding that it outperforms both SVM and NB in predicting on-time graduation.

Despite these promising results, existing studies still report conflicting findings regarding the
most effective algorithm for GOT prediction. Moreover, many studies rely on default ML settings without
performing hyperparameter tuning, potentially constraining model performance. In fact,
hyperparameter optimization plays a critical role in improving model generalizability [28]. For instance,
[29] demonstrated that tuning parameters in RF, NB, and SVM significantly enhances prediction
accuracy. Similarly, [30] reported improved accuracy after applying hyperparameter tuning to Extreme
Gradient Boosting (XGBTree). The importance of this process was further highlighted by [31], who
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showed that dynamic tuning improves performance in GOT prediction. However, the application of
hyperparameter tuning within EDM remains underexplored.

Another critical limitation in prior research is the treatment of imbalanced datasets. GOT
prediction data is often skewed, with a significantly larger proportion of students graduating on time
compared to those who do not. As a result, ML. models are frequently biased toward the majority class,
leading to poor sensitivity in detecting minority outcomes. Addressing this issue requires the application
of effective resampling techniques [32], [33]. Several studies have evaluated such techniques in the
context of GOT prediction. For example, [34] found that applying SMOTE to ANN improved performance
over imbalanced baselines. Likewise, [35] and [36] reported that SMOTE enhances the predictive
accuracy of SVM and RF models, respectively. A comparative analysis by [37] further demonstrated that
different resampling methods each offer unique benefits when used with RF. Despite these advances,
the role of resampling in EDM remains underrepresented in the literature.

A final methodological gap lies in the evaluation process itself. Most prior studies assess model
performance using only a single metric, typically accuracy, without conducting multivariate significance
testing across multiple evaluation criteria. For example, [32] employed ANOVA to compare resampling
strategies but did not incorporate metrics such as precision, recall, F1-score, or AUC, which may lead to
incomplete or biased conclusions.

To bridge these methodological gaps, the present study proposes a comprehensive and rigorous
evaluation framework that integrates seven ML algorithms, five resampling strategies, systematic
hyperparameter tuning, and multivariate performance validation.

Table 1. Review of research works in the field of educational data mining for predicting students’ Graduation on Time.
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3. MATERIAL AND METHOD

3.1. Dataset Information and data preprocessing

This study uses a previously collected dataset focusing on the on-time graduation (GOT) of
undergraduate students at STIEM Bongaya University, as referenced in [31], [37]. The dataset was
obtained directly from the institution's academic information system and contains 4,093 records with
15 predictor variables, consisting of six continuous and nine categorical features, as shown in Table 2.
The target variable is binary: a value of 1 indicates that a student graduated on time, while 0 represents
a delayed graduation.

The class distribution is highly imbalanced, with 3,071 students classified as on-time graduates
(majority class) and 1,022 as delayed graduates (minority class). Although this imbalance may influence
model bias, no specific observation-level bias was detected. Standard preprocessing procedures were
applied to prepare the data for modeling. Categorical variables were encoded using label encoding, while
continuous variables were scaled to ensure consistent feature ranges across input values. Outlier
detection was also considered during preprocessing; however, no significant outliers were identified
that warranted removal or transformation.

This study employed two common model validation techniques: random hold-out validation
and shuffled 10-fold cross-validation. In the holdout method, 80% of the data was allocated for training
and 20% for testing.

Table 2. The main features of students’ dataset of STIEM Bongaya University.

Feature Value Description Type
NCP 44 -175 Student’s Number Credit Passed Continuous
SMT4 0-4 Student’s GPA Semester 4 Continuous
SMT3 0-4 Student’s GPA Semester 3 Continuous
SMT2 0-4 Student’s GPA Semester 2 Continuous
SMT1 0-4 Student’s GPA Semester 1 Continuous
AA 16 - 46 Student’s Age Admission Continuous
FS Accounting, Financial, Marketing, Human Resource Student’s Focus Study Categorical

Categorical
FI IDR 1 - IDR 499.999 Student’s Father Income Categorical

IDR 500.000 - IDR 999.999

IDR 1.000.000 - IDR 1.999.999
IDR 2.000.000 - IDR 4.999.999
IDR 5.000.000 - IDR 20.000.000
More than IDR 20.000.000

Nil Income
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Feature Value Description Type
MI IDR 1 - IDR 500.000 Student’s Mother Income Categorical
IDR 500.000 - IDR 999.999
IDR 1.000.000 - IDR 1.999.999
IDR 2.000.000 - IDR 4.999.999
IDR 5.000.000 - IDR 20.000.000
More than IDR 20.000.000

Nil Income
SEX Male, Female Student’s Sex Categorical
RE with Parents, with Guardian, Boarding House, Student’s Residence Categorical
Dormitory, Others
TR Public transportation, Student’s Transportation Categorical

Private Car,
Private Motorcycle
Walk to campus

DEP Management, Accounting Department taken by student Categorical
CT Regular Class, Executive Class Class type taken by student Categorical
GOT Status 1,0 Student’s graduation status Categorical

(1is GOT and 0 is not GOT)

3.2. Handling Imbalance dataset with resampling methods

To address the class imbalance observed in the dataset, this study applied five widely adopted
resampling strategies from recent EDM literature: Random Undersampling (RUS), Random
Oversampling (ROS), a hybrid of RUS and ROS, SMOTE for Nominal and Continuous data (SMOTE-NC),
and a hybrid of SMOTE-NC and RUS. These methods were selected based on their popularity, proven
effectiveness in prior studies, and suitability to the data characteristics [33], [37], [38], [39].

SMOTE-NC was chosen over standard SMOTE because the dataset contains both categorical and
continuous features, which SMOTE-NC is specifically designed to handle. However, each resampling
method presents potential limitations: RUS may discard valuable information by removing majority-
class samples, ROS can increase the risk of overfitting by duplicating minority-class samples, and
SMOTE-NC may generate noisy or unrealistic synthetic instances. To mitigate these limitations, hybrid
techniques were employed to achieve class balance while reducing the risk of overfitting and minimizing
information loss or synthetic bias.

In this study, SMOTE-NC was configured using five nearest neighbors (k = 5) and a resampling
ratio of 0.8, following from previous research [33], [37]. All resampling procedures were applied
exclusively to the training set to prevent data leakage and to ensure valid model evaluation.

All resampling methods were systematically evaluated using a consistent set of evaluation
metrics (accuracy, precision, recall, F1-score, and AUC) and validation protocols (hold-out and cross-
validation) and were applied uniformly across seven machine learning models. This provided a robust
comparative framework. The implementation was conducted using the ROSE [40] and themis [41]
packages in R.

3.3. Machine learning models and Hyperparameters tuning

This study evaluated the performance of seven machine learning (ML) algorithms for predicting
on-time graduation: Random Forest (RF), Support Vector Machine with Radial Basis Function kernel
(SVM-RBF), Extreme Gradient Boosting (XGBTree), k-Nearest Neighbors (KNN), Naive Bayes (NB),
Artificial Neural Network (ANN), and AdaBoost. These models were selected based on their theoretical
diversity and frequent use in educational data mining (EDM). They represent a range of learning
paradigms: tree-based methods (RF, XGB), probabilistic classifiers (NB), kernel-based models (SVM),
neural models (ANN), instance-based learning (KNN), and ensemble techniques (AdaBoost), allowing
comprehensive algorithmic comparison under varied conditions.

To maximize each model’s predictive potential, hyperparameter tuning was conducted using
grid search combined with 10-fold cross-validation on the training data. This approach ensures that
tuning decisions do not leak information from the test set, thereby reducing the risk of overfitting. The
tuning process was performed separately for each resampling scenario to account for changes in data
distribution. The choice of hyperparameter ranges was based on commonly accepted defaults in prior
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studies [31] and empirical guidelines. For instance, Random Forest used mtry = c(2, 3, 4, 5) to explore
how many features to consider at each split, appropriate for a dataset with 15 predictors. SVM-RBF was
tuned over sigma = seq(0.1, 0.9, 0.1) and C = ¢(0.01, 0.1, 1), enabling control over the kernel width and
regularization strength. XGBTree's learning rate (eta = ¢(0.025, 0.05, 0.1)) and tree depth (max_depth =
c(3, 4, 5)) were tuned to balance training speed and model complexity. KNN used k = ¢(3, 5, 7, 9) to test
different neighborhood sizes, avoiding even numbers to prevent tie votes. For NB, kernel density
estimation (usekernel) and smoothing parameters (adjust, fL.) were tuned. ANN configurations included
variations in network size (size = c(1, 3, 5, 7)) and regularization (decay = seq(0.01, 0.1, 0.01)). AdaBoost
used different boosting iterations (nlter = seq(10, 100, 10)) and base method settings.

Two model validation strategies were employed: (1) 80/20 hold-out validation, which provides
arealistic estimate of model performance on unseen data, and (2) shuffle 10-fold cross-validation, which
increases reliability by ensuring each data point contributes to both training and evaluation. The use of
both methods allowed for comparison between real-world generalization (hold-out) and internal
consistency (cross-validation). To further prevent overfitting, particularly in small or imbalanced
subsets, the tuning process was constrained to moderate parameter ranges, and regularization
components were activated where applicable (e.g, decay in ANN, gamma in XGBTree). Model
performance under each configuration was compared using a consistent set of evaluation metrics and
resampling methods, ensuring fair and robust comparison across all experimental conditions. All models
were implemented using R, primarily utilizing the caret package [42], and the randomForest package
[43]. These packages provide robust functions for training, tuning, and evaluating ML models efficiently.
This systematic approach enables a fair and reproducible comparison of classification performance
across different algorithm-resampling-tuning combinations, thereby strengthening the empirical
validity of the findings.

Table 3. Machine learning techniques with hyperparameters settings.

Methods Hyperparameters tuning
Random Forest mtry = c(2,3,4,5)
SVM-RBF sigma = seq(0.1,0.9, by=0.1); C= ¢(0.01, 0.1, 1)
XGBTree max_depth = ¢(3, 4, 5); nrounds = seq(from = 25, to = 95, by = 10);

eta = ¢(0.025, 0.05, 0.1); gamma = seq(from = 1, to = 5, by = 1);
colsample_bytree = ¢(0.6,0.7,0.8); min_child_weight = 1;
subsample = ¢(0.7, 0.8, 0.9, 1)

NB usekernel = ¢(T,F); adjust=c(0.01,0.1,1); fL=c(0.01,0.1,1)
KNN k=c¢(1,3,5,7,9)
ANN size = seq(from = 1, to = 7, by = 2);
decay = seq(from = 0, to = 0.1, by = 0.01)
AdaBoost nlter = seq(10, 100, by=10);

method = c("Adaboost.MI", "Real Adaboost")

3.4. Evaluation Methods

Evaluating classifier performance is essential for identifying the most effective model,
particularly in imbalanced classification problems. This study uses five key evaluation metrics: accuracy,
sensitivity (recall), precision, F1-score, and area under the curve (AUC) to provide a comprehensive and
balanced assessment of model effectiveness. Relying solely on a single metric such as accuracy can be
misleading, especially when class distributions are skewed. To ensure a fair comparison across all
performance dimensions, the average of these five metrics is also computed for each model.

In addition to descriptive metrics, statistical testing is conducted to determine whether
observed differences between machine learning models are statistically significant. While
nonparametric tests like the Friedman test and Wilcoxon signed-rank test are frequently used in ML
research, they are typically restricted to a single metric. In contrast, this study compares model
performance across multiple metrics simultaneously, necessitating the use of multivariate methods such
as MANOVA. However, MANOVA requires multivariate normality assumptions.

To verify this assumption, several multivariate normality tests were conducted, including
Mardia’s test, Henze-Zirkler’s test, Royston’s test, Doornik-Hansen'’s test, and the E-statistic, using the
MVN package in R [44]. As reported in the Results section, all tests indicated significant deviations from
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normality, invalidating the use of MANOVA for this dataset. As an alternative, Permutational Multivariate
Analysis of Variance (PERMANOVA) was used via the vegan package in R [45]. PERMANOVA computes
Euclidean distances between observations and uses random permutations to test whether the
performance differences among models are greater than would be expected by chance, without
requiring distributional assumptions [46]. To explore which model pairs differ significantly, Bonferroni-
adjusted post-hoc comparisons were conducted [47]. The results are presented in the Results section.
Additionally, a boxplot of average metric scores is provided to visually compare performance and
highlight the most consistent and best-performing model.

4. RESULT AND DISCUSSION

This study aims to examine the impact of class imbalance on machine learning performance by
applying various resampling techniques. Additionally, hyperparameter tuning is conducted to optimize
model performance across different resampling strategies. All models and analyses were implemented
in R, a high-level programming language widely used for statistical computing and machine learning.
The following sections present the experimental results, starting with dataset distribution, followed by
hyperparameter tuning, model performance evaluation, statistical significance testing, and discussion
section.

4.1. Results

4.1.1. Resampling results

As the first step in the modeling process, this study examines the impact of class imbalance on
machine learning performance through the application of various resampling strategies. Table 4
presents the class distribution of the dataset before and after resampling, including the breakdown of
training and testing sets. Initially, the dataset was highly imbalanced, with 3,071 instances in the
majority class (students graduating on time) and 1,022 in the minority class (students not graduating
on time). This imbalance can lead to biased classification outcomes, where machine learning models
disproportionately favor the majority class, often at the expense of correctly identifying minority class
instances.

To address this issue, five resampling techniques were applied, each offering distinct
advantages and trade-offs. Random Undersampling (RUS) reduces the number of majority class
instances to match the minority class, resulting in a fully balanced dataset (1,022:1,022). While this
improves class balance, it does so by removing potentially informative samples, which may lead to
information loss. In contrast, Random Oversampling (ROS) duplicates instances from the minority class
until it matches the majority (3,071:3,071). This method retains all original data but may introduce
redundancy and increase the likelihood of overfitting.

SMOTE-NC (Synthetic Minority Over-sampling Technique for Nominal and Continuous
variables) was also employed to generate synthetic examples of the minority class. This technique
produced a distribution of 3,071:2,456, allowing for increased diversity in training data while
minimizing the overfitting risks associated with simple duplication. Furthermore, two hybrid
approaches were utilized to combine the strengths of individual resampling methods. The first hybrid,
combining RUS and ROS, generated a relatively balanced dataset (1,978:2,115), aiming to reduce data
loss while avoiding excessive duplication. The second hybrid, which combines SMOTE-NC with RUS,
achieved a perfect balance (2,456:2,456) while preserving variation and reducing noise.

Although all datasets preserved an 80:20 split between training and testing partitions, the
actual number of instances in each split varied depending on the resampling strategy. Undersampling
techniques led to smaller training sets, while oversampling expanded the dataset size. These differences
can affect both the learning process and the generalization ability of the models.

In summary, the use of diverse resampling strategies highlights the importance of
systematically evaluating how class distribution affects model performance. The next section

Comparing different Machine Learning Algorithms in Predicting Students’ On-Time Graduation.... 276
Rizal Bakril?, Syamsu Alam?, Niken probondani Astuti!, Muh. Ilham Bakhtiar3


http://u.lipi.go.id/1466480524
http://u.lipi.go.id/1464049910

JOIN | Volume 10 No. 2 | December 2025: 270-285

investigates how these differences interact with hyperparameter optimization and contribute to overall
classification outcomes.

Table 4. Class size of full dataset, Training, and testing for each resampling method

. . . Hybrid 2
. Undersampling Oversampling Hybrid 1 SMOTE-
Dataset Baseline (SMOTE-
(RUS) (ROS) (RUS+ROS) NC NC+RUS)
Full Dataset 1:3071 1:1022 1:3071 1:2115 1:3071 1:2456
0:1022 0:1022 0:3071 0:1978 0:2456 0:2456
Training (80%) 1:2457 1:818 1:2457 1:1692 1:2457 1:1965
0:818 0:818 0:2457 0:1583 0:1965 0:1965
Testing (20%) 1:614 1:212 1:614 1:423 1:614 1:491
0:204 0:212 0:614 0:395 0:491 0:491

4.1.2 The best hyperparameter tuning

After balancing the data, the next step was to optimize each model's performance through
hyperparameter tuning. This process was conducted independently for each resampling technique to
account for distributional differences. Table 5 presents the best hyperparameter configurations for each
machine learning algorithm across different resampling methods, highlighting how data distribution
influences model performance. Random Forest consistently selects mtry = 5, except under RUS, where a
lower value (mtry = 4) is preferred due to the reduced dataset size. SVM-Radial maintains C = 1 across
all methods, but sigma varies, with higher values observed in ROS, indicating sensitivity to oversampling.
XGBTree exhibits variations in nrounds, gamma, and colsample_bytree, where deeper trees (max_depth
= 5) and higher gamma are favored in oversampling techniques, while RUS prefers simpler
configurations (nrounds = 75). Naive Bayes generally benefits from kernel density estimation (usekernel
= TRUE), except in the baseline model. KNN performs best with k = 1 under most resampling methods,
suggesting that synthetic data enhances nearest-neighbor classification. Neural networks prefer larger
architectures (size = 7), with slight variations in decay values depending on the resampling approach.
Meanwhile, AdaBoost shows fluctuations in nlter, with oversampling favoring more iterations (100),
while RUS achieves optimal performance with fewer iterations (20).

These findings demonstrate that resampling techniques significantly impact hyperparameter
tuning, affecting model complexity and generalization. Although computational time was not explicitly
recorded, the hyperparameter search space was designed with efficiency. For instance, simpler
configurations such as Random Forest with lower mtry values or AdaBoost with fewer boosting
iterations offered faster training times, making them more suitable for practical deployment in resource-
constrained educational environments. The next section will further examine how these optimized
models perform in classification tasks.

Table 5. Best hyperparameters tuning of machine learning techniques for each resampling method

Best Hyperparameters tuning

Methods Baseline RUS ROS Both Smotenc Smotenc-Rus
Es:(js(zm mtry = 5. mtry = 4. mtry = 5. mtry = 5. mtry = 5. mtry = 5.
SVM sigma=0.1, sigma=0.1, sigma = 0.9, sigma = 0.4, sigma=0.1, sigma = 0.1,
Radial c=1 c=1 c=1 c=1 c=1 c=1
nrounds = 95,
max_depth = nrounds = 75, nrounds = 95, nrounds = 95, nrounds = 95, nrounds = 95,
4, max_depth=4, max_depth=35, max_depth =5, max_depth =5, max_depth =5,
eta=0.1, eta=0.1, eta=0.1, eta=0.1, eta=0.1, eta=0.1,
gamma =1, gamma = 2, gamma =1, gamma = 2, gamma = 1, gamma = 2,
XGBTree colsample_byt colsample_bytre colsample_bytree colsample_bytree colsample_bytree colsample_bytree
ree = 0.6, e=0.7, =0.8, =0.8, =0.6, =0.8,
min_child_wei min_child_weigh min_child_weight min_child_weight min_child_weight min_child_weight
ght=1, t=1, =1, =1, =1, =1,
subsample =  subsample = 0.7. subsample =0.7. subsample=0.8. subsample =0.9. subsample =0.9.
0.9.
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Best Hyperparameters tuning

Methods Baseline RUS ROS Both Smotenc Smotenc-Rus

fL.=0.01, fL.=0.01,

Naive usekernel = usekernel = fL. = 0.01, fl.= 0.01, fl.= 0.01, fl.=0.01,

usekernel = TRUE, usekernel = TRUE, usekernel = TRUE, usekernel = TRUE,

Bayes FALSE, TRUE, adjust=0.1 adjust=1 adjust=0.1 adjust=0.1
adjust=0.01. adjust=0.1. Just=E.% Just= =% Just="%% Just=E.%

KNN k=9. k=7. k=1. k=1. k=1 k=1.

Neural size = 3, size=1, size =7, size =7, size=7, size =7,

Network decay = 0.06. decay =0.09 decay = 0.04. decay = 0.06. decay = 0.05. decay = 0.04.
nlter = 90, nlter = 20, nlter = 100, nlter = 70, nlter = 100, nlter = 100,

AdaBoost method = method = method = method = method = method =
Adaboost.MI.  Adaboost.MI. Adaboost.MI Adaboost.MI Adaboost.MI. Adaboost.MI

4.1.3. Machine learning performance

This section presents the comparative performance of machine learning models after applying
resampling strategies and hyperparameter tuning. Table 6 summarizes the precision, recall, F1-score,
accuracy, AUC, and average performance metrics for each model under different resampling conditions.
To ensure comprehensive evaluation, five key metrics are used: precision, recall, F1-score, accuracy, and
AUC. Relying on a single metric, such as accuracy, can be misleading, especially in imbalanced datasets,
because it may mask poor performance on the minority class. By averaging multiple metrics, the
evaluation becomes more balanced, reflecting overall model effectiveness.

In the context of this study, the F1-score is particularly important as it evaluates the model’s
ability to correctly identify students who graduate on time (the positive class), balancing the trade-off
between precision and recall. A high F1-score means the model is both precise in its predictions and
capable of identifying most students in the positive class. While precision emphasizes correct positive
predictions and recall emphasizes complete positive coverage, the F1-score integrates both perspectives
into a single harmonic mean, which is useful in high-stakes educational decision-making.

Table 6. Performance statistics of machine learning techniques with resampling methods

Algorithm Resample Precision Recall F1 Accuracy AUC Average
Baseline 0.843 0.967 0.901 0.840 0.837 0.878
RUS 0.718 0.711 0.714 0.716 0.794 0.731
SVM-Radial ROS 0.855 0.919 0.885 0.881 0.931 0.894
RUS-ROS 0.870 0.839 0.854 0.852 0.930 0.869
SMOTENC 0.829 0.879 0.854 0.833 0.896 0.858
SMOTENC-RUS 0.785 0.774 0.779 0.781 0.869 0.798
Baseline 0.867 0.964 0.913 0.862 0.878 0.897
RUS 0.746 0.833 0.787 0.775 0.850 0.798
XGBTree ROS 0.836 0.897 0.866 0.861 0.940 0.880
RUS-ROS 0.856 0.898 0.877 0.869 0.941 0.888
SMOTENC 0.863 0.936 0.898 0.882 0.951 0.906
SMOTENC-RUS 0.842 0.900 0.870 0.866 0.939 0.883
Baseline 0.876 0.967 0.920 0.873 0.890 0.905
RUS 0.749 0.833 0.789 0.777 0.848 0.799
ROS 0.943 0.910 0.926 0.928 0.980 0.937
RandomForest
RUS-ROS 0.950 0.934 0.942 0.940 0.977 0.948
SMOTENC 0.870 0.896 0.883 0.868 0.946 0.892
SMOTENC-RUS 0.860 0.849 0.855 0.855 0.934 0.871
Baseline 0.828 0.974 0.895 0.829 0.846 0.874
RUS 0.639 0.765 0.696 0.667 0.763 0.706
KNN ROS 0.954 0.886 0.919 0.922 0.922 0.921
RUS-ROS 0.927 0.903 0.915 0.913 0.914 0.914
SMOTENC 0.888 0.818 0.852 0.842 0.845 0.849
SMOTENC-RUS 0.854 0.776 0.813 0.822 0.822 0.817
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Algorithm Resample Precision Recall F1 Accuracy AUC Average

Baseline 0.868 0.946 0.906 0.852 0.847 0.884

RUS 0.635 0.946 0.760 0.701 0.829 0.774

Naive Bayes ROS 0.726 0.917 0.810 0.785 0.871 0.822
RUS-ROS 0.686 0.965 0.802 0.753 0.865 0.814

SMOTENC 0.820 0.940 0.876 0.852 0.928 0.883

SMOTENC-RUS 0.795 0.876 0.833 0.825 0.911 0.848

Baseline 0.877 0.953 0.913 0.864 0.856 0.893

RUS 0.728 0.838 0.779 0.762 0.833 0.788

ROS 0.807 0.832 0.820 0.817 0.900 0.835

Neural Network oo ros 0.822 0.842 0.832 0.824 0.902 0.844
SMOTENC 0.850 0.865 0.857 0.840 0.904 0.863

SMOTENC-RUS 0.774 0.800 0.787 0.783 0.871 0.803

Baseline 0.839 0.860 0.850 0.771 0.611 0.786

RUS 0.724 0.784 0.753 0.743 0.739 0.749

ROS 0.876 0.853 0.865 0.866 0.794 0.851

adaBoost

RUS-ROS 0.849 0.865 0.857 0.851 0.774 0.839

SMOTENC 0.832 0.840 0.836 0.817 0.748 0.815

SMOTENC-RUS 0.793 0.825 0.808 0.805 0.741 0.794

As shown in Table 6, Random Forest consistently yielded the highest F1-scores across most
resampling techniques. Its best performance was recorded with the RUS-ROS method (F1 = 0.942),
followed by ROS (F1 = 0.926). Compared to its baseline performance (F1 = 0.920), this represents a
measurable improvement, highlighting the benefit of resampling. While the difference may appear
numerically small (0.022), in practical terms it implies more reliable identification of students likely to
graduate on time, a valuable outcome for early academic interventions. K-Nearest Neighbors (KNN) also
demonstrated strong results, particularly under oversampling techniques. With F1-scores of 0.919
(ROS) and 0.915 (RUS-ROS), KNN benefited from increased minority class representation, which is
crucial for instance-based learning algorithms. Similarly, XGBTree showed competitive F1-scores
ranging from 0.787 (RUS) to 0.898 (SMOTENC), indicating its robustness across varying class
distributions. Neural networks achieved solid performance under most resampling strategies, peaking
at 0.913 (baseline) and 0.857 (SMOTENC). However, performance dropped under RUS (F1 = 0.779),
suggesting sensitivity to reduced training data. Naive Bayes achieved F1-scores of 0.906 (baseline) and
0.876 (SMOTENC) but was less stable under RUS and hybrid resampling. AdaBoost consistently
performed the weakest among all models, with F1-scores ranging from 0.753 (RUS) to 0.865 (ROS),
revealing its limited effectiveness in handling imbalanced data even with tuning.

While differences in F1-score between models may seem small (e.g., 0.01 to 0.02), they can
translate to meaningful practical implications. For example, in a dataset of over 4,000 students, a 1%
improvement in F1-score could affect the classification of dozens of students. This may influence how
resources are allocated for advising, scholarship eligibility, or early warning systems. Therefore, small
metric improvements, especially in F1, should not be overlooked in educational contexts.

Overall, the combination of Random Forest and RUS-ROS resampling emerges as the most
effective configuration, achieving both high average metric scores (0.948) and the highest F1-score. This
suggests that hybrid resampling paired with a robust tree-based model provides optimal performance
in predicting on-time graduation. The next section will examine the statistical significance of these
observed differences using PERMANOVA and pairwise post-hoc testing.

4.1.4. Statistical analysis results

The subsequent step involves statistically evaluating performance differences among the
machine learning models. This study employs PERMANOVA due to the violation of the multivariate
normality assumption required by multivariate analysis of variance (MANOVA). Table 7 presents the
results of several multivariate normality tests, including the Mardia, Henze-Zirkler, Royston, and
Doornik-Hansen tests and the E-statistic. All tests produced p-values less than 0.05, indicating significant
deviations from multivariate normality. Consequently, the assumptions for applying MANOVA are not
met, necessitating a non-parametric alternative.
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As a solution, this study adopts Permutational Multivariate Analysis of Variance (PERMANOVA),
a non-parametric method based on permutation tests and dissimilarity matrices. Unlike MANOVA,
PERMANOVA does not assume multivariate normality. It calculates pseudo-F statistics by partitioning
total variance across groups using distance matrices, with p-values obtained through repeated
permutations of group labels to determine whether observed differences exceed those expected by
chance.

Table 7. Multivariate normality test of MANOVA assumption

Method Statistics p value MVN
Mardia's test (Kurtosis) 4.296 1.736e-05 NO
Henze-Zirkler's test 2.346 0.000 NO
Royston's test 10.627 0.018 NO
Doornik-Hansen's test 66.740 1.881e-10 NO
E-statistic 3.051 0.000 NO

Table 8. Permutational multivariate analysis of variance (PERMANOVA) results

Source df SS R? F p value
Model 6 0.287 0.311 2.634 0.009**
Residual 35 0.635 0.689
Total 41 0.922 1

Table 8 displays the PERMANOVA results. The model yielded an F value of 2.634 and a p-value
of 0.009, indicating statistically significant differences between at least some machine learning model
pairs. The R? value of 0.311 suggests that approximately 31.1% of the variation in model performance
is attributable to algorithmic differences, while the remaining 68.9% may result from model-resampling
interactions or random variation. Although this R? value is moderate, it is not uncommon in complex
modeling contexts, particularly when multiple algorithms interact with heterogeneous resampling
strategies and feature structures.

To further explore these differences, Bonferroni's post-hoc pairwise comparison tests were
conducted, as presented in Table 9. Several algorithm pairs exhibited statistically significant
performance differences. For instance, Random Forest significantly outperformed AdaBoost (p = 0.006,
R%=0.519), and XGBTree also showed superiority over AdaBoost (p = 0.012, R? = 0.541). Likewise, Naive
Bayes and Neural Network yielded significantly better results than AdaBoost, with p-values of 0.004 and
0.008, respectively, and R? values above 0.36. Additionally, Random Forest significantly outperformed
Naive Bayes (p = 0.032, R* = 0.329). These findings confirm AdaBoost’s consistently weaker
performance relative to the stronger and more stable outcomes produced by Random Forest and
XGBTree.

However, not all comparisons revealed statistically significant differences. For example,
comparisons between SVM-Radial and Random Forest (p = 0.155), SVM-Radial and XGBTree (p = 0.243),
and XGBTree and Random Forest (p = 0.530) suggest these models perform similarly in practical terms.
This is further supported by small effect sizes and overlapping distributions observed in performance
visualizations. While statistical tests offer formal validation, practical relevance and effect sizes should
also guide educational decision-making. In many cases, even small but consistent gains in classification
performance, especially for predicting delayed graduation, can meaningfully inform institutional
interventions.

Table 9. The Bonferronis’ post-hoc results

Pairs df ss F Model R? p value
SVM-Radial vs XGBTree 1 0.023 1.423 0.125 0.243
SVM-Radial vs RandomForest 1 0.044 2.176 0.179 0.155
SVM-Radial vs KNN 1 0.007 0.211 0.021 0.781
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Pairs df ss F Model R? p value
SVM-Radial vs Naive Bayes 1 0.034 1.684 0.144 0.207
SVM-Radial vs Neural Network 1 0.000 0.018 0.002 0.994
SVM-Radial vs adaBoost 1 0.061 3.450 0.256 0.047
XGBTree vs RandomForest 1 0.008 0.573 0.054 0.530
XGBTree vs KNN 1 0.023 0.984 0.090 0.430
XGBTree vs Naive Bayes 1 0.041 3.165 0.240 0.078
XGBTree vs Neural Network 1 0.022 2.284 0.186 0.155
XGBTree vs adaBoost 1 0.124 11.809 0.541 0.012
RandomForest vs KNN 1 0.035 1.267 0.112 0.304
RandomForest vs Naive Bayes 1 0.083 4911 0.329 0.032
RandomForest vs Neural Network 1 0.045 3.307 0.248 0.090
RandomForest vs adaBoost 1 0.156 10.799 0.519 0.006
KNN vs Naive Bayes 1 0.051 1.871 0.158 0.176
KNN vs Neural Network 1 0.008 0.344 0.033 0.662
KNN vs adaBoost 1 0.048 1.895 0.159 0.170
Naive Bayes vs Neural Network 1 0.028 2.075 0.172 0.145
Naive Bayes vs adaBoost 1 0.098 6.940 0.410 0.004
Neural Network vs adaBoost 1 0.063 5.686 0.362 0.008

To complement the statistical analyses, two visualizations were created to provide a clearer
overview of model performance. The first is a boxplot illustrating the average metrics for each machine
learning technique, calculated as the mean of five key performance indicators: precision, recall, F1-score,
accuracy, and AUC. As shown in Figure 1, Random Forest and XGBTree achieve the highest median values
with tight interquartile ranges, indicating consistent performance across multiple resampling iterations.
In contrast, AdaBoost exhibits the lowest median and broad variability, reinforcing its weaker and less
stable performance. KNN and Naive Bayes display relatively high average scores, albeit with greater
variability compared to the top performers.

The second boxplot, presented in Figure 2, highlights the distribution of F1 scores across all
models. This metric is particularly emphasized in this study due to its relevance in predicting timely
graduation. The visualization reveals that Random Forest and XGBTree not only achieve high F1-scores
but also maintain narrow spreads, signifying both strong and stable classification performance.
Conversely, AdaBoost again records lower medians and wider variability, while SVM-Radial shows
greater dispersion, suggesting less consistent outcomes across resampling iterations. These
visualizations reinforce the statistical findings and offer practical insight into the consistency and
robustness of each evaluated model.
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Figure 1. Boxplot of Machine learning performance based on average metric
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A boxplot of F1 Score for Machine Learning Techniques
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Figure 2. Boxplot of Machine learning performance based on F1 score

In summary, the combination of PERMANOVA, Bonferroni post-hoc analysis, and detailed
performance visualizations provides a statistically grounded and practically relevant understanding of
model differences. These insights ensure that the selected models are not only statistically sound but
also meaningful when applied to real-world challenges in predicting timely student graduation.

4.2. Discussion

This study investigated the influence of resampling strategies and hyperparameter tuning on
the performance of various machine learning algorithms for predicting student graduation on time. The
results confirm that model performance significantly improves when class imbalance is properly
addressed and hyperparameters are carefully optimized. Compared to baseline models, resampled
datasets, particularly those using hybrid methods, demonstrated better classification accuracy and
model robustness.

The findings are consistent with previous studies, such as [31], which identified Random Forest
as a strong classifier for predicting on-time graduation using the same dataset. However, unlike [31],
which did not apply any resampling strategies to address data imbalance, this study incorporates five
different resampling techniques and hyperparameter tuning. This enhancement allows for a more
realistic and fair model comparison, especially in contexts where class imbalance can lead to biased
results. Similarly, while [37] introduced the hybrid RUS-ROS approach as a promising solution for
imbalance problems, their study did not assess its performance across multiple machine learning
algorithms nor validate its effectiveness through multivariate statistical testing. In contrast, this study
demonstrates that combining RUS-ROS with Random Forest yields the highest average performance
score (0.948), making it a highly effective configuration for imbalanced educational datasets.

A key insight from the performance evaluation is the role of the F1-score, which balances
precision and recall and is especially important in predicting students who graduate on time, the positive
class in this study. The results showed that Random Forest achieved the highest F1-score of 0.942 under
the RUS-ROS combination, indicating its strong ability to accurately identify on-time graduates without
sacrificing precision or recall.

This study’s contribution also lies in its methodological rigor. Unlike previous works that relied
on single-metric evaluations (e.g., [32] using accuracy), this research adopts a multivariate perspective
by applying PERMANOVA across five key metrics: precision, recall, F1-score, accuracy, and AUC. The use
of PERMANOVA, complemented by Bonferroni's post-hoc tests and performance visualizations, ensures
a more robust.
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Visual analysis using boxplots further supported the statistical findings. Random Forest and
XGBoost not only achieved the highest median performance but also showed low variability across
resampling methods. In contrast, AdaBoost exhibited both lower scores and greater inconsistency,
reinforcing its weaker suitability for the task.

In summary, this research advances the field of educational data mining by proposing an
integrated framework that combines advanced resampling, hyperparameter optimization, multivariate
evaluation, and visual analysis. These innovations enhance the reliability and interpretability of
predictive models for supporting data-driven academic decision-making, especially in identifying
students at risk of delayed graduation.

5. CONCLUSION

This study directly addresses two critical challenges in predicting on-time graduation: the
presence of class imbalance in educational data and the lack of hyperparameter optimization in prior
research. By integrating five resampling strategies and seven machine learning algorithms, this work
systematically evaluates how these factors influence model performance. The results demonstrate that
the combination of Random Forest and the hybrid RUS-ROS resampling technique yields the highest
average performance score (0.948), including a notably high F1-score of 0.942, indicating strong
predictive accuracy for identifying students who graduate on time. These findings are supported by
rigorous evaluation using both cross-validation and hold-out validation methods. Furthermore, this
study introduces a multivariate statistical testing framework using PERMANOVA and Bonferroni’s post-
hoc pairwise comparisons, which confirms the significance of performance differences across models.
These findings contribute to the field of educational data mining by offering a robust methodology for
handling imbalanced data and optimizing predictive model performance in academic classification tasks.

While the results are encouraging, they are not without limitations. The reliability of the
findings is supported by statistical validation, although the R? value of 31.1% suggests that a substantial
portion of performance variability remains unexplained. Future research could explore more advanced
resampling methods such as Borderline-SMOTE, ADASYN, or adaptive synthetic techniques to improve
class balance. The adoption of deep learning architectures, model stacking, or AutoML frameworks may
also enhance predictive accuracy and scalability in future implementations.

Finally, the proposed framework may be extended to other educational data mining problems,
such as dropout prediction, academic risk detection, or early warning systems for student
disengagement. Applying this methodology to more diverse datasets, particularly those that integrate
both cognitive and non-cognitive variables, could further strengthen data-driven decision-making in
higher education institutions.
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