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Timely graduation prediction is a crucial issue in higher education, 
especially when academic, demographic, and behavioral factors interact 
in complex ways. However, many previous studies rely on default 
machine learning (ML) parameters and fail to consider the class 
imbalance problem, leading to suboptimal predictions. This study aims 
to build a comprehensive framework to evaluate the effectiveness of 
seven ML algorithms, which are AdaBoost, K-Nearest Neighbors, Naïve 
Bayes, Neural Network, Random Forest, SVM-RBF, and XGBoost, for 
predicting graduation on time by incorporating five resampling 
techniques and hyperparameter tuning. Resampling methods include 
Random Undersampling (RUS), Random Oversampling (ROS), 
SMOTENC, and two hybrid approaches (RUS-ROS and SMOTENC-RUS). 
Hyperparameter tuning was conducted using Grid Search, and model 
performance was evaluated through cross-validation and hold-out 
methods. The results show that Random Forest combined with RUS-ROS 
achieved the best performance, with an average metric score of 0.948. 
Statistical analysis using PERMANOVA (p = 0.009) and Bonferroni's 
post-hoc pairwise tests confirmed significant differences between 
certain models. This study contributes to the educational data mining 
literature by demonstrating that combining resampling and 
hyperparameter tuning improves classification performance in 
imbalanced educational datasets. 
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1. INTRODUCTION 

A main challenge for universities is to deeply analyze their performance, identify institutional 
uniqueness, and build development strategies to achieve future academic targets [1]. In an increasingly 
complex and competitive educational environment, student academic success, particularly Graduation 
on Time (GOT), has become a key metric for evaluating institutional performance [2]. However, 
predicting GOT is inherently difficult due to the complex interplay between academic, demographic, and 
behavioral factors. Traditional statistical models often lack the flexibility to capture these interactions, 
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prompting a shift toward machine learning (ML) approaches that can process large and diverse 
educational datasets [3], [4]. 

Machine learning has shown promise in educational contexts, especially for predicting student 
outcomes such as academic achievement, dropout risk, and graduation likelihood [5]. As more data 
becomes available from student information systems, learning management platforms, and 
administrative records, the ability to develop accurate and proactive prediction models is increasingly 
valuable for higher education institutions. Yet despite widespread ML adoption in Educational Data 
Mining (EDM), several methodological limitations persist in the literature. 

Many prior studies rely on default ML parameters without conducting proper hyperparameter 
tuning, which limits the models’ potential performance. In addition, class imbalance is a recurring issue 
in GOT datasets, where the number of on-time graduates typically far exceeds that of delayed graduates. 
Models trained on such data often become biased toward the majority class, resulting in poor predictive 
performance on minority cases. These issues are further compounded by the limited use of robust 
evaluation methods; most studies rely on a single metric, such as accuracy, and few apply multivariate 
statistical significance testing to validate model differences. 

To address these limitations, this study proposes a comprehensive evaluation framework for 
GOT prediction by combining multiple machine learning algorithms, five data resampling techniques, 
and systematic hyperparameter tuning using grid search. Unlike previous research, this study evaluates 
model performance across five key metrics, which are accuracy, precision, recall, F1-score, and AUC, 
using both cross-validation and hold-out validation. It also introduces a statistical significance testing 
procedure through Permutational Multivariate Analysis of Variance (PERMANOVA) and Bonferroni's 
post-hoc pairwise comparisons test to determine whether performance differences are statistically 
significant. 

By integrating these components, this study contributes a holistic and statistically grounded 
framework to the EDM literature. The findings not only identify the most effective combination of 
algorithm and resampling strategy for GOT classification but also offer practical guidance for educational 
institutions in developing reliable, data-driven approaches to support timely student graduation. 

 
2. RELATED WORK 

The application of machine learning (ML) in predicting Graduation on Time (GOT) has received 
growing attention in the field of Educational Data Mining (EDM). For instance, a study by [6] in 2019 
introduced an Artificial Neural Network (ANN), which demonstrated promising performance for GOT 
classification. Other researchers have explored the use of Naïve Bayes (NB), achieving an accuracy of 
86.63%, making it a technique that remains relevant to this day [7], [8], [9], [10], [11], [12], [13], [14]. In 
2020, [15] employed K-Nearest Neighbor (KNN) with k-fold cross-validation and reported 
improvements in prediction accuracy. More advanced models, such as Support Vector Machine (SVM) 
[16] and Random Forest (RF) [17], have also shown high accuracy in predicting GOT, while ensemble 
methods like AdaBoost [18] have exhibited potential for further enhancing model performance. 

In addition to evaluating individual models, several studies have compared ML algorithms for 
GOT prediction across different performance metrics. For example, [19] compared NB and ANN, 
revealing the superiority of ANN with an accuracy of 77.04%. In a subsequent study, [20] reported that 
SVM outperformed both RF and NB, highlighting the importance of selecting an optimal number of k-
folds, typically between 5 and 20. Similarly, [21] found that ANN achieved higher accuracy than NB 
(81.82%). More recently, studies from 2021 to 2024 [22], [23], [24] have consistently demonstrated that 
RF outperforms other algorithms, including SVM and NB, in terms of overall predictive accuracy and 
Area Under the Curve (AUC). Meanwhile, [25] and [26] confirmed that SVM remained competitive, 
achieving up to 96.34% accuracy in 2023. On the other hand, [27] and [13] offered further support for 
RF, concluding that it outperforms both SVM and NB in predicting on-time graduation. 

Despite these promising results, existing studies still report conflicting findings regarding the 
most effective algorithm for GOT prediction. Moreover, many studies rely on default ML settings without 
performing hyperparameter tuning, potentially constraining model performance. In fact, 
hyperparameter optimization plays a critical role in improving model generalizability [28]. For instance, 
[29] demonstrated that tuning parameters in RF, NB, and SVM significantly enhances prediction 
accuracy. Similarly, [30] reported improved accuracy after applying hyperparameter tuning to Extreme 
Gradient Boosting (XGBTree). The importance of this process was further highlighted by [31], who 
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showed that dynamic tuning improves performance in GOT prediction. However, the application of 
hyperparameter tuning within EDM remains underexplored. 

Another critical limitation in prior research is the treatment of imbalanced datasets. GOT 
prediction data is often skewed, with a significantly larger proportion of students graduating on time 
compared to those who do not. As a result, ML models are frequently biased toward the majority class, 
leading to poor sensitivity in detecting minority outcomes. Addressing this issue requires the application 
of effective resampling techniques [32], [33]. Several studies have evaluated such techniques in the 
context of GOT prediction. For example, [34] found that applying SMOTE to ANN improved performance 
over imbalanced baselines. Likewise, [35] and [36] reported that SMOTE enhances the predictive 
accuracy of SVM and RF models, respectively. A comparative analysis by [37] further demonstrated that 
different resampling methods each offer unique benefits when used with RF. Despite these advances, 
the role of resampling in EDM remains underrepresented in the literature. 

A final methodological gap lies in the evaluation process itself. Most prior studies assess model 
performance using only a single metric, typically accuracy, without conducting multivariate significance 
testing across multiple evaluation criteria. For example, [32] employed ANOVA to compare resampling 
strategies but did not incorporate metrics such as precision, recall, F1-score, or AUC, which may lead to 
incomplete or biased conclusions. 

To bridge these methodological gaps, the present study proposes a comprehensive and rigorous 
evaluation framework that integrates seven ML algorithms, five resampling strategies, systematic 
hyperparameter tuning, and multivariate performance validation. 

Table 1. Review of research works in the field of educational data mining for predicting students’ Graduation on Time.  
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[6]       ✓          ✓   ✓   

[7]    ✓            ✓   ✓ ✓  

[8]    ✓         ✓ ✓  ✓   ✓   

[9]    ✓            ✓      

[10]    ✓            ✓   ✓ ✓  

[11]    ✓            ✓   ✓ ✓  

[12]    ✓         ✓ ✓ ✓ ✓   ✓   

[13] ✓   ✓ ✓ ✓       ✓ ✓ ✓ ✓ ✓  ✓ ✓  

[14]    ✓         ✓ ✓ ✓ ✓ ✓  ✓ ✓  

[15]     ✓           ✓   ✓ ✓  

[16]  ✓              ✓    ✓  

[17] ✓               ✓      

[18]       ✓         ✓      

[19]    ✓  ✓       ✓ ✓ ✓ ✓ ✓  ✓ ✓  

[20] ✓ ✓  ✓         ✓ ✓ ✓ ✓    ✓  

[21]    ✓  ✓          ✓   ✓ ✓  

[22] ✓ ✓    ✓          ✓   ✓   

[23] ✓ ✓  ✓ ✓           ✓   ✓ ✓  

[24] ✓   ✓ ✓        ✓ ✓  ✓   ✓ ✓  

[25]  ✓    ✓          ✓   ✓   

[26]  ✓     ✓      ✓ ✓ ✓ ✓   ✓   

[27] ✓ ✓  ✓         ✓ ✓ ✓ ✓ ✓  ✓ ✓  
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Article 

Machine Learning Techniques Resampling Methods Evaluation Validation 
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[29] ✓ ✓  ✓         ✓ ✓  ✓ ✓  ✓ ✓ ✓ 

[30]   ✓            ✓ ✓ ✓  ✓  ✓ 

[31] ✓ ✓ ✓ ✓ ✓ ✓ ✓         ✓   ✓ ✓ ✓ 

[34] ✓          ✓     ✓ ✓   ✓  

[35]  ✓         ✓  ✓ ✓  ✓   ✓ ✓  

[36] ✓ ✓   ✓      ✓  ✓ ✓ ✓ ✓   ✓ ✓  

[37] ✓       ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓  ✓ ✓  

Present 
Work 

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

3. MATERIAL AND METHOD  

3.1.  Dataset Information and data preprocessing 

This study uses a previously collected dataset focusing on the on-time graduation (GOT) of 
undergraduate students at STIEM Bongaya University, as referenced in [31], [37]. The dataset was 
obtained directly from the institution's academic information system and contains 4,093 records with 
15 predictor variables, consisting of six continuous and nine categorical features, as shown in Table 2. 
The target variable is binary: a value of 1 indicates that a student graduated on time, while 0 represents 
a delayed graduation. 

The class distribution is highly imbalanced, with 3,071 students classified as on-time graduates 
(majority class) and 1,022 as delayed graduates (minority class). Although this imbalance may influence 
model bias, no specific observation-level bias was detected. Standard preprocessing procedures were 
applied to prepare the data for modeling. Categorical variables were encoded using label encoding, while 
continuous variables were scaled to ensure consistent feature ranges across input values. Outlier 
detection was also considered during preprocessing; however, no significant outliers were identified 
that warranted removal or transformation. 

This study employed two common model validation techniques: random hold-out validation 
and shuffled 10-fold cross-validation. In the holdout method, 80% of the data was allocated for training 
and 20% for testing.  

 

Table 2. The main features of students’ dataset of STIEM Bongaya University. 

Feature  Value Description Type 
NCP 44 - 175 Student’s Number Credit Passed Continuous 
SMT4 0 - 4 Student’s GPA Semester 4 Continuous 
SMT3 0 - 4 Student’s GPA Semester 3 Continuous 
SMT2 0 - 4 Student’s GPA Semester 2 Continuous 
SMT1 0 - 4 Student’s GPA Semester 1 Continuous 
AA 16 - 46 Student’s Age Admission Continuous 
FS Accounting, Financial, Marketing, Human Resource Student’s Focus Study Categorical 

Categorical 
FI IDR 1 - IDR 499.999 

IDR 500.000 - IDR 999.999 
IDR 1.000.000 - IDR 1.999.999 
IDR 2.000.000 - IDR 4.999.999 
IDR 5.000.000 - IDR 20.000.000 
More than IDR 20.000.000 
Nil Income 

Student’s Father Income Categorical 
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Feature  Value Description Type 
MI IDR 1 - IDR 500.000 

IDR 500.000 - IDR 999.999 
IDR 1.000.000 - IDR 1.999.999 
IDR 2.000.000 - IDR 4.999.999 
IDR 5.000.000 - IDR 20.000.000 
More than IDR 20.000.000 
Nil Income 

Student’s Mother Income Categorical 

SEX Male, Female Student’s Sex Categorical 
RE with Parents, with Guardian, Boarding House, 

Dormitory, Others 
Student’s Residence Categorical 

TR Public transportation, 
Private Car, 
Private Motorcycle 
Walk to campus 

Student’s Transportation Categorical 

DEP Management, Accounting Department taken by student Categorical 
CT Regular Class, Executive Class Class type taken by student Categorical 
GOT Status 1, 0 Student’s graduation status  

(1 is GOT and 0 is not GOT) 
Categorical 

3.2. Handling Imbalance dataset with resampling methods 

To address the class imbalance observed in the dataset, this study applied five widely adopted 
resampling strategies from recent EDM literature: Random Undersampling (RUS), Random 
Oversampling (ROS), a hybrid of RUS and ROS, SMOTE for Nominal and Continuous data (SMOTE-NC), 
and a hybrid of SMOTE-NC and RUS. These methods were selected based on their popularity, proven 
effectiveness in prior studies, and suitability to the data characteristics [33], [37], [38], [39]. 

SMOTE-NC was chosen over standard SMOTE because the dataset contains both categorical and 
continuous features, which SMOTE-NC is specifically designed to handle. However, each resampling 
method presents potential limitations: RUS may discard valuable information by removing majority-
class samples, ROS can increase the risk of overfitting by duplicating minority-class samples, and 
SMOTE-NC may generate noisy or unrealistic synthetic instances. To mitigate these limitations, hybrid 
techniques were employed to achieve class balance while reducing the risk of overfitting and minimizing 
information loss or synthetic bias. 

In this study, SMOTE-NC was configured using five nearest neighbors (k = 5) and a resampling 
ratio of 0.8, following from previous research [33], [37]. All resampling procedures were applied 
exclusively to the training set to prevent data leakage and to ensure valid model evaluation. 

All resampling methods were systematically evaluated using a consistent set of evaluation 
metrics (accuracy, precision, recall, F1-score, and AUC) and validation protocols (hold-out and cross-
validation) and were applied uniformly across seven machine learning models. This provided a robust 
comparative framework. The implementation was conducted using the ROSE [40] and themis [41] 
packages in R. 

3.3. Machine learning models and Hyperparameters tuning 

This study evaluated the performance of seven machine learning (ML) algorithms for predicting 
on-time graduation: Random Forest (RF), Support Vector Machine with Radial Basis Function kernel 
(SVM-RBF), Extreme Gradient Boosting (XGBTree), k-Nearest Neighbors (KNN), Naïve Bayes (NB), 
Artificial Neural Network (ANN), and AdaBoost. These models were selected based on their theoretical 
diversity and frequent use in educational data mining (EDM). They represent a range of learning 
paradigms: tree-based methods (RF, XGB), probabilistic classifiers (NB), kernel-based models (SVM), 
neural models (ANN), instance-based learning (KNN), and ensemble techniques (AdaBoost), allowing 
comprehensive algorithmic comparison under varied conditions. 

To maximize each model’s predictive potential, hyperparameter tuning was conducted using 
grid search combined with 10-fold cross-validation on the training data. This approach ensures that 
tuning decisions do not leak information from the test set, thereby reducing the risk of overfitting. The 
tuning process was performed separately for each resampling scenario to account for changes in data 
distribution. The choice of hyperparameter ranges was based on commonly accepted defaults in prior 
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studies [31] and empirical guidelines. For instance, Random Forest used mtry = c(2, 3, 4, 5) to explore 
how many features to consider at each split, appropriate for a dataset with 15 predictors. SVM-RBF was 
tuned over sigma = seq(0.1, 0.9, 0.1) and C = c(0.01, 0.1, 1), enabling control over the kernel width and 
regularization strength. XGBTree's learning rate (eta = c(0.025, 0.05, 0.1)) and tree depth (max_depth = 
c(3, 4, 5)) were tuned to balance training speed and model complexity. KNN used k = c(3, 5, 7, 9) to test 
different neighborhood sizes, avoiding even numbers to prevent tie votes. For NB, kernel density 
estimation (usekernel) and smoothing parameters (adjust, fL) were tuned. ANN configurations included 
variations in network size (size = c(1, 3, 5, 7)) and regularization (decay = seq(0.01, 0.1, 0.01)). AdaBoost 
used different boosting iterations (nIter = seq(10, 100, 10)) and base method settings. 

Two model validation strategies were employed: (1) 80/20 hold-out validation, which provides 
a realistic estimate of model performance on unseen data, and (2) shuffle 10-fold cross-validation, which 
increases reliability by ensuring each data point contributes to both training and evaluation. The use of 
both methods allowed for comparison between real-world generalization (hold-out) and internal 
consistency (cross-validation). To further prevent overfitting, particularly in small or imbalanced 
subsets, the tuning process was constrained to moderate parameter ranges, and regularization 
components were activated where applicable (e.g., decay in ANN, gamma in XGBTree). Model 
performance under each configuration was compared using a consistent set of evaluation metrics and 
resampling methods, ensuring fair and robust comparison across all experimental conditions. All models 
were implemented using R, primarily utilizing the caret package [42], and the randomForest package 
[43]. These packages provide robust functions for training, tuning, and evaluating ML models efficiently. 
This systematic approach enables a fair and reproducible comparison of classification performance 
across different algorithm-resampling-tuning combinations, thereby strengthening the empirical 
validity of the findings. 

 

Table 3. Machine learning techniques with hyperparameters settings. 

Methods Hyperparameters tuning 

Random Forest mtry  =  c(2, 3, 4, 5) 

SVM-RBF sigma = seq(0.1,0.9, by=0.1); C= c(0.01, 0.1, 1) 

XGBTree max_depth = c(3, 4, 5); nrounds = seq(from = 25, to = 95, by = 10); 
eta = c(0.025, 0.05, 0.1); gamma = seq(from = 1, to = 5, by = 1); 
colsample_bytree = c(0.6,0.7,0.8); min_child_weight = 1;  
subsample = c(0.7, 0.8, 0.9, 1) 

NB usekernel = c(T,F); adjust=c(0.01,0.1,1); fL=c(0.01,0.1,1) 

KNN k = c(1,3,5,7,9) 

ANN size = seq(from = 1, to = 7, by = 2);  
decay = seq(from = 0, to = 0.1, by = 0.01) 

AdaBoost nIter = seq(10, 100, by=10);  
method = c("Adaboost.MI", "Real Adaboost") 

3.4. Evaluation Methods 

Evaluating classifier performance is essential for identifying the most effective model, 
particularly in imbalanced classification problems. This study uses five key evaluation metrics: accuracy, 
sensitivity (recall), precision, F1-score, and area under the curve (AUC) to provide a comprehensive and 
balanced assessment of model effectiveness. Relying solely on a single metric such as accuracy can be 
misleading, especially when class distributions are skewed. To ensure a fair comparison across all 
performance dimensions, the average of these five metrics is also computed for each model. 

In addition to descriptive metrics, statistical testing is conducted to determine whether 
observed differences between machine learning models are statistically significant. While 
nonparametric tests like the Friedman test and Wilcoxon signed-rank test are frequently used in ML 
research, they are typically restricted to a single metric. In contrast, this study compares model 
performance across multiple metrics simultaneously, necessitating the use of multivariate methods such 
as MANOVA. However, MANOVA requires multivariate normality assumptions. 

To verify this assumption, several multivariate normality tests were conducted, including 
Mardia’s test, Henze-Zirkler’s test, Royston’s test, Doornik-Hansen’s test, and the E-statistic, using the 
MVN package in R [44]. As reported in the Results section, all tests indicated significant deviations from 
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normality, invalidating the use of MANOVA for this dataset. As an alternative, Permutational Multivariate 
Analysis of Variance (PERMANOVA) was used via the vegan package in R [45]. PERMANOVA computes 
Euclidean distances between observations and uses random permutations to test whether the 
performance differences among models are greater than would be expected by chance, without 
requiring distributional assumptions [46]. To explore which model pairs differ significantly, Bonferroni-
adjusted post-hoc comparisons were conducted [47]. The results are presented in the Results section. 
Additionally, a boxplot of average metric scores is provided to visually compare performance and 
highlight the most consistent and best-performing model. 

4. RESULT AND DISCUSSION 

This study aims to examine the impact of class imbalance on machine learning performance by 
applying various resampling techniques. Additionally, hyperparameter tuning is conducted to optimize 
model performance across different resampling strategies. All models and analyses were implemented 
in R, a high-level programming language widely used for statistical computing and machine learning. 
The following sections present the experimental results, starting with dataset distribution, followed by 
hyperparameter tuning, model performance evaluation, statistical significance testing, and discussion 
section. 

4.1.  Results 

4.1.1.  Resampling results 

As the first step in the modeling process, this study examines the impact of class imbalance on 
machine learning performance through the application of various resampling strategies. Table 4 
presents the class distribution of the dataset before and after resampling, including the breakdown of 
training and testing sets. Initially, the dataset was highly imbalanced, with 3,071 instances in the 
majority class (students graduating on time) and 1,022 in the minority class (students not graduating 
on time). This imbalance can lead to biased classification outcomes, where machine learning models 
disproportionately favor the majority class, often at the expense of correctly identifying minority class 
instances. 

To address this issue, five resampling techniques were applied, each offering distinct 
advantages and trade-offs. Random Undersampling (RUS) reduces the number of majority class 
instances to match the minority class, resulting in a fully balanced dataset (1,022:1,022). While this 
improves class balance, it does so by removing potentially informative samples, which may lead to 
information loss. In contrast, Random Oversampling (ROS) duplicates instances from the minority class 
until it matches the majority (3,071:3,071). This method retains all original data but may introduce 
redundancy and increase the likelihood of overfitting. 

SMOTE-NC (Synthetic Minority Over-sampling Technique for Nominal and Continuous 
variables) was also employed to generate synthetic examples of the minority class. This technique 
produced a distribution of 3,071:2,456, allowing for increased diversity in training data while 
minimizing the overfitting risks associated with simple duplication. Furthermore, two hybrid 
approaches were utilized to combine the strengths of individual resampling methods. The first hybrid, 
combining RUS and ROS, generated a relatively balanced dataset (1,978:2,115), aiming to reduce data 
loss while avoiding excessive duplication. The second hybrid, which combines SMOTE-NC with RUS, 
achieved a perfect balance (2,456:2,456) while preserving variation and reducing noise. 

Although all datasets preserved an 80:20 split between training and testing partitions, the 
actual number of instances in each split varied depending on the resampling strategy. Undersampling 
techniques led to smaller training sets, while oversampling expanded the dataset size. These differences 
can affect both the learning process and the generalization ability of the models. 

In summary, the use of diverse resampling strategies highlights the importance of 
systematically evaluating how class distribution affects model performance. The next section 
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investigates how these differences interact with hyperparameter optimization and contribute to overall 
classification outcomes. 

Table 4. Class size of full dataset, Training, and testing for each resampling method 

Dataset 
 

Baseline 
Undersampling 

(RUS) 
Oversampling 

(ROS) 
Hybrid 1 

(RUS+ROS) 
SMOTE-

NC 

Hybrid 2  
(SMOTE-
NC+RUS) 

Full Dataset   1:3071 
0:1022 

1:1022 
0:1022 

1:3071 
0:3071 

1:2115 
0:1978 

1:3071 
0:2456 

1:2456 
0:2456 

Training (80%)  1:2457 
0:818 

1:818 
0:818 

1:2457 
0:2457 

1:1692 
0:1583 

1:2457 
0:1965 

1:1965 
0:1965 

Testing (20%)  1:614 
0:204 

1:212 
0:212 

1:614 
0:614 

1:423 
0:395 

1:614 
0:491 

1:491 
0:491 

 
4.1.2  The best hyperparameter tuning 

After balancing the data, the next step was to optimize each model's performance through 
hyperparameter tuning. This process was conducted independently for each resampling technique to 
account for distributional differences. Table 5 presents the best hyperparameter configurations for each 
machine learning algorithm across different resampling methods, highlighting how data distribution 
influences model performance. Random Forest consistently selects mtry = 5, except under RUS, where a 
lower value (mtry = 4) is preferred due to the reduced dataset size. SVM-Radial maintains C = 1 across 
all methods, but sigma varies, with higher values observed in ROS, indicating sensitivity to oversampling. 
XGBTree exhibits variations in nrounds, gamma, and colsample_bytree, where deeper trees (max_depth 
= 5) and higher gamma are favored in oversampling techniques, while RUS prefers simpler 
configurations (nrounds = 75). Naïve Bayes generally benefits from kernel density estimation (usekernel 
= TRUE), except in the baseline model. KNN performs best with k = 1 under most resampling methods, 
suggesting that synthetic data enhances nearest-neighbor classification. Neural networks prefer larger 
architectures (size = 7), with slight variations in decay values depending on the resampling approach. 
Meanwhile, AdaBoost shows fluctuations in nIter, with oversampling favoring more iterations (100), 
while RUS achieves optimal performance with fewer iterations (20). 

These findings demonstrate that resampling techniques significantly impact hyperparameter 
tuning, affecting model complexity and generalization. Although computational time was not explicitly 
recorded, the hyperparameter search space was designed with efficiency. For instance, simpler 
configurations such as Random Forest with lower mtry values or AdaBoost with fewer boosting 
iterations offered faster training times, making them more suitable for practical deployment in resource-
constrained educational environments. The next section will further examine how these optimized 
models perform in classification tasks. 

Table 5. Best hyperparameters tuning of machine learning techniques for each resampling method 

Methods 
Best Hyperparameters tuning 

Baseline RUS ROS Both Smotenc Smotenc-Rus 

Random 

Forest 
mtry = 5. mtry = 4. mtry = 5. mtry = 5. mtry = 5. mtry = 5. 

SVM 
Radial 

sigma = 0.1,  
C = 1 

sigma = 0.1, 
C = 1 

sigma = 0.9, 
C = 1 

sigma = 0.4, 
C = 1 

sigma = 0.1, 
C = 1 

sigma = 0.1, 
C = 1 

XGBTree 

nrounds = 95,  
max_depth = 
4,  
eta = 0.1,  
gamma = 1,  
colsample_byt
ree = 0.6,  
min_child_wei
ght = 1, 
subsample = 
0.9. 

nrounds = 75,  
max_depth = 4,  
eta= 0.1, 
gamma = 2,  
colsample_bytre
e = 0.7,  
min_child_weigh
t = 1, 
subsample = 0.7. 

nrounds = 95,  
max_depth = 5,  
eta = 0.1,  
gamma = 1,  
colsample_bytree 
= 0.8, 
min_child_weight 
= 1, 
subsample = 0.7. 

nrounds = 95,  
max_depth = 5,  
eta = 0.1,  
gamma = 2, 
colsample_bytree 
= 0.8, 
min_child_weight 
= 1, 
subsample = 0.8. 

nrounds = 95,  
max_depth = 5,  
eta = 0.1,  
gamma = 1,  
colsample_bytree 
= 0.6, 
min_child_weight 
= 1, 
subsample = 0.9. 

nrounds = 95,  
max_depth = 5,  
eta = 0.1,  
gamma = 2, 
colsample_bytree 
= 0.8, 
min_child_weight 
= 1, 
subsample = 0.9. 
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Methods 
Best Hyperparameters tuning 

Baseline RUS ROS Both Smotenc Smotenc-Rus 

Naïve 
Bayes 

fL = 0.01, 
usekernel = 
FALSE, 
adjust = 0.01. 

fL = 0.01,  
usekernel = 
TRUE, 
adjust = 0.1. 

fL = 0.01,  
usekernel = TRUE, 
adjust = 0.1. 

fL = 0.01,  
usekernel = TRUE, 
adjust = 1. 

fL = 0.01,  
usekernel = TRUE, 
adjust = 0.1. 

fL = 0.01,  
usekernel = TRUE, 
adjust = 0.1. 

KNN k = 9. k = 7. k = 1. k = 1. k = 1. k = 1. 

Neural 
Network 

size = 3, 
decay = 0.06. 

size = 1, 
decay = 0.09 

size = 7, 
decay = 0.04. 

size = 7, 
decay = 0.06. 

size = 7, 
decay = 0.05. 

size = 7, 
decay = 0.04. 

AdaBoost 
nIter = 90, 
method = 
Adaboost.MI. 

nIter = 20, 
method = 
Adaboost.MI. 

nIter = 100, 
method = 
Adaboost.MI. 

nIter = 70, 
method = 
Adaboost.MI 

nIter = 100, 
method = 
Adaboost.MI. 

nIter = 100, 
method = 
Adaboost.MI 

4.1.3.  Machine learning performance 

This section presents the comparative performance of machine learning models after applying 
resampling strategies and hyperparameter tuning. Table 6 summarizes the precision, recall, F1-score, 
accuracy, AUC, and average performance metrics for each model under different resampling conditions. 
To ensure comprehensive evaluation, five key metrics are used: precision, recall, F1-score, accuracy, and 
AUC. Relying on a single metric, such as accuracy, can be misleading, especially in imbalanced datasets, 
because it may mask poor performance on the minority class. By averaging multiple metrics, the 
evaluation becomes more balanced, reflecting overall model effectiveness. 

In the context of this study, the F1-score is particularly important as it evaluates the model’s 
ability to correctly identify students who graduate on time (the positive class), balancing the trade-off 
between precision and recall. A high F1-score means the model is both precise in its predictions and 
capable of identifying most students in the positive class. While precision emphasizes correct positive 
predictions and recall emphasizes complete positive coverage, the F1-score integrates both perspectives 
into a single harmonic mean, which is useful in high-stakes educational decision-making. 

Table 6. Performance statistics of machine learning techniques with resampling methods 

Algorithm Resample Precision Recall F1 Accuracy AUC Average 

SVM-Radial 

Baseline 0.843 0.967 0.901 0.840 0.837 0.878 

RUS 0.718 0.711 0.714 0.716 0.794 0.731 

ROS 0.855 0.919 0.885 0.881 0.931 0.894 

RUS-ROS 0.870 0.839 0.854 0.852 0.930 0.869 

SMOTENC 0.829 0.879 0.854 0.833 0.896 0.858 

SMOTENC-RUS 0.785 0.774 0.779 0.781 0.869 0.798 

XGBTree 

Baseline 0.867 0.964 0.913 0.862 0.878 0.897 

RUS 0.746 0.833 0.787 0.775 0.850 0.798 

ROS 0.836 0.897 0.866 0.861 0.940 0.880 

RUS-ROS 0.856 0.898 0.877 0.869 0.941 0.888 

SMOTENC 0.863 0.936 0.898 0.882 0.951 0.906 

SMOTENC-RUS 0.842 0.900 0.870 0.866 0.939 0.883 

RandomForest 

Baseline 0.876 0.967 0.920 0.873 0.890 0.905 

RUS 0.749 0.833 0.789 0.777 0.848 0.799 

ROS 0.943 0.910 0.926 0.928 0.980 0.937 

RUS-ROS 0.950 0.934 0.942 0.940 0.977 0.948 

SMOTENC 0.870 0.896 0.883 0.868 0.946 0.892 

SMOTENC-RUS 0.860 0.849 0.855 0.855 0.934 0.871 

KNN 

Baseline 0.828 0.974 0.895 0.829 0.846 0.874 

RUS 0.639 0.765 0.696 0.667 0.763 0.706 

ROS 0.954 0.886 0.919 0.922 0.922 0.921 

RUS-ROS 0.927 0.903 0.915 0.913 0.914 0.914 

SMOTENC 0.888 0.818 0.852 0.842 0.845 0.849 

SMOTENC-RUS 0.854 0.776 0.813 0.822 0.822 0.817 

http://u.lipi.go.id/1466480524
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Algorithm Resample Precision Recall F1 Accuracy AUC Average 

Naïve Bayes 

Baseline 0.868 0.946 0.906 0.852 0.847 0.884 

RUS 0.635 0.946 0.760 0.701 0.829 0.774 

ROS 0.726 0.917 0.810 0.785 0.871 0.822 

RUS-ROS 0.686 0.965 0.802 0.753 0.865 0.814 

SMOTENC 0.820 0.940 0.876 0.852 0.928 0.883 

SMOTENC-RUS 0.795 0.876 0.833 0.825 0.911 0.848 

Neural Network 

Baseline 0.877 0.953 0.913 0.864 0.856 0.893 

RUS 0.728 0.838 0.779 0.762 0.833 0.788 

ROS 0.807 0.832 0.820 0.817 0.900 0.835 

RUS-ROS 0.822 0.842 0.832 0.824 0.902 0.844 

SMOTENC 0.850 0.865 0.857 0.840 0.904 0.863 

SMOTENC-RUS 0.774 0.800 0.787 0.783 0.871 0.803 

adaBoost 

Baseline 0.839 0.860 0.850 0.771 0.611 0.786 

RUS 0.724 0.784 0.753 0.743 0.739 0.749 

ROS 0.876 0.853 0.865 0.866 0.794 0.851 

RUS-ROS 0.849 0.865 0.857 0.851 0.774 0.839 

SMOTENC 0.832 0.840 0.836 0.817 0.748 0.815 

SMOTENC-RUS 0.793 0.825 0.808 0.805 0.741 0.794 

As shown in Table 6, Random Forest consistently yielded the highest F1-scores across most 
resampling techniques. Its best performance was recorded with the RUS-ROS method (F1 = 0.942), 
followed by ROS (F1 = 0.926). Compared to its baseline performance (F1 = 0.920), this represents a 
measurable improvement, highlighting the benefit of resampling. While the difference may appear 
numerically small (0.022), in practical terms it implies more reliable identification of students likely to 
graduate on time, a valuable outcome for early academic interventions. K-Nearest Neighbors (KNN) also 
demonstrated strong results, particularly under oversampling techniques. With F1-scores of 0.919 
(ROS) and 0.915 (RUS-ROS), KNN benefited from increased minority class representation, which is 
crucial for instance-based learning algorithms. Similarly, XGBTree showed competitive F1-scores 
ranging from 0.787 (RUS) to 0.898 (SMOTENC), indicating its robustness across varying class 
distributions. Neural networks achieved solid performance under most resampling strategies, peaking 
at 0.913 (baseline) and 0.857 (SMOTENC). However, performance dropped under RUS (F1 = 0.779), 
suggesting sensitivity to reduced training data. Naïve Bayes achieved F1-scores of 0.906 (baseline) and 
0.876 (SMOTENC) but was less stable under RUS and hybrid resampling. AdaBoost consistently 
performed the weakest among all models, with F1-scores ranging from 0.753 (RUS) to 0.865 (ROS), 
revealing its limited effectiveness in handling imbalanced data even with tuning. 

While differences in F1-score between models may seem small (e.g., 0.01 to 0.02), they can 
translate to meaningful practical implications. For example, in a dataset of over 4,000 students, a 1% 
improvement in F1-score could affect the classification of dozens of students. This may influence how 
resources are allocated for advising, scholarship eligibility, or early warning systems. Therefore, small 
metric improvements, especially in F1, should not be overlooked in educational contexts. 

Overall, the combination of Random Forest and RUS-ROS resampling emerges as the most 
effective configuration, achieving both high average metric scores (0.948) and the highest F1-score. This 
suggests that hybrid resampling paired with a robust tree-based model provides optimal performance 
in predicting on-time graduation. The next section will examine the statistical significance of these 
observed differences using PERMANOVA and pairwise post-hoc testing. 

4.1.4. Statistical analysis results  

The subsequent step involves statistically evaluating performance differences among the 
machine learning models. This study employs PERMANOVA due to the violation of the multivariate 
normality assumption required by multivariate analysis of variance (MANOVA). Table 7 presents the 
results of several multivariate normality tests, including the Mardia, Henze-Zirkler, Royston, and 
Doornik-Hansen tests and the E-statistic. All tests produced p-values less than 0.05, indicating significant 
deviations from multivariate normality. Consequently, the assumptions for applying MANOVA are not 
met, necessitating a non-parametric alternative. 
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As a solution, this study adopts Permutational Multivariate Analysis of Variance (PERMANOVA), 
a non-parametric method based on permutation tests and dissimilarity matrices. Unlike MANOVA, 
PERMANOVA does not assume multivariate normality. It calculates pseudo-F statistics by partitioning 
total variance across groups using distance matrices, with p-values obtained through repeated 
permutations of group labels to determine whether observed differences exceed those expected by 
chance. 

Table 7. Multivariate normality test of MANOVA assumption 

Method Statistics p value MVN 

Mardia's test (Kurtosis) 4.296 1.736e-05 NO 

Henze-Zirkler's test 2.346 0.000 NO 

Royston's test 10.627 0.018 NO 

Doornik-Hansen's test 66.740 1.881e-10 NO 

E-statistic 3.051 0.000 NO 

Table 8. Permutational multivariate analysis of variance (PERMANOVA) results 

Source df SS 𝑹𝟐 F p value 

Model 6 0.287 0.311 2.634 0.009** 

Residual 35 0.635 0.689   

Total 41 0.922 1   

 
Table 8 displays the PERMANOVA results. The model yielded an F value of 2.634 and a p-value 

of 0.009, indicating statistically significant differences between at least some machine learning model 
pairs. The R² value of 0.311 suggests that approximately 31.1% of the variation in model performance 
is attributable to algorithmic differences, while the remaining 68.9% may result from model-resampling 
interactions or random variation. Although this R² value is moderate, it is not uncommon in complex 
modeling contexts, particularly when multiple algorithms interact with heterogeneous resampling 
strategies and feature structures. 

To further explore these differences, Bonferroni's post-hoc pairwise comparison tests were 
conducted, as presented in Table 9. Several algorithm pairs exhibited statistically significant 
performance differences. For instance, Random Forest significantly outperformed AdaBoost (p = 0.006, 
R² = 0.519), and XGBTree also showed superiority over AdaBoost (p = 0.012, R² = 0.541). Likewise, Naïve 
Bayes and Neural Network yielded significantly better results than AdaBoost, with p-values of 0.004 and 
0.008, respectively, and R² values above 0.36. Additionally, Random Forest significantly outperformed 
Naïve Bayes (p = 0.032, R² = 0.329). These findings confirm AdaBoost’s consistently weaker 
performance relative to the stronger and more stable outcomes produced by Random Forest and 
XGBTree. 

However, not all comparisons revealed statistically significant differences. For example, 
comparisons between SVM-Radial and Random Forest (p = 0.155), SVM-Radial and XGBTree (p = 0.243), 
and XGBTree and Random Forest (p = 0.530) suggest these models perform similarly in practical terms. 
This is further supported by small effect sizes and overlapping distributions observed in performance 
visualizations. While statistical tests offer formal validation, practical relevance and effect sizes should 
also guide educational decision-making. In many cases, even small but consistent gains in classification 
performance, especially for predicting delayed graduation, can meaningfully inform institutional 
interventions. 

Table 9. The Bonferronis’ post-hoc results  

Pairs df ss F Model 𝑹𝟐 p value 

SVM-Radial vs XGBTree 1 0.023 1.423 0.125 0.243 

SVM-Radial vs RandomForest 1 0.044 2.176 0.179 0.155 

SVM-Radial vs KNN 1 0.007 0.211 0.021 0.781 

http://u.lipi.go.id/1466480524
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Pairs df ss F Model 𝑹𝟐 p value 

SVM-Radial vs Naïve Bayes 1 0.034 1.684 0.144 0.207 

SVM-Radial vs Neural Network 1 0.000 0.018 0.002 0.994 

SVM-Radial vs adaBoost 1 0.061 3.450 0.256 0.047 

XGBTree vs RandomForest 1 0.008 0.573 0.054 0.530 

XGBTree vs KNN 1 0.023 0.984 0.090 0.430 

XGBTree vs Naïve Bayes 1 0.041 3.165 0.240 0.078 

XGBTree vs Neural Network 1 0.022 2.284 0.186 0.155 

XGBTree vs adaBoost 1 0.124 11.809 0.541 0.012 

RandomForest vs KNN 1 0.035 1.267 0.112 0.304 

RandomForest vs Naïve Bayes 1 0.083 4.911 0.329 0.032 

RandomForest vs Neural Network 1 0.045 3.307 0.248 0.090 

RandomForest vs adaBoost 1 0.156 10.799 0.519 0.006 

KNN vs Naïve Bayes 1 0.051 1.871 0.158 0.176 

KNN vs Neural Network 1 0.008 0.344 0.033 0.662 

KNN vs adaBoost 1 0.048 1.895 0.159 0.170 

Naïve Bayes vs Neural Network 1 0.028 2.075 0.172 0.145 

Naïve Bayes vs adaBoost 1 0.098 6.940 0.410 0.004 

Neural Network vs adaBoost 1 0.063 5.686 0.362 0.008 

 
To complement the statistical analyses, two visualizations were created to provide a clearer 

overview of model performance. The first is a boxplot illustrating the average metrics for each machine 
learning technique, calculated as the mean of five key performance indicators: precision, recall, F1-score, 
accuracy, and AUC. As shown in Figure 1, Random Forest and XGBTree achieve the highest median values 
with tight interquartile ranges, indicating consistent performance across multiple resampling iterations. 
In contrast, AdaBoost exhibits the lowest median and broad variability, reinforcing its weaker and less 
stable performance. KNN and Naïve Bayes display relatively high average scores, albeit with greater 
variability compared to the top performers. 

The second boxplot, presented in Figure 2, highlights the distribution of F1 scores across all 
models. This metric is particularly emphasized in this study due to its relevance in predicting timely 
graduation. The visualization reveals that Random Forest and XGBTree not only achieve high F1-scores 
but also maintain narrow spreads, signifying both strong and stable classification performance. 
Conversely, AdaBoost again records lower medians and wider variability, while SVM-Radial shows 
greater dispersion, suggesting less consistent outcomes across resampling iterations. These 
visualizations reinforce the statistical findings and offer practical insight into the consistency and 
robustness of each evaluated model. 

 
Figure 1. Boxplot of Machine learning performance based on average metric 
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Figure 2. Boxplot of Machine learning performance based on F1 score 

In summary, the combination of PERMANOVA, Bonferroni post-hoc analysis, and detailed 
performance visualizations provides a statistically grounded and practically relevant understanding of 
model differences. These insights ensure that the selected models are not only statistically sound but 
also meaningful when applied to real-world challenges in predicting timely student graduation. 

4.2.  Discussion 

This study investigated the influence of resampling strategies and hyperparameter tuning on 
the performance of various machine learning algorithms for predicting student graduation on time. The 
results confirm that model performance significantly improves when class imbalance is properly 
addressed and hyperparameters are carefully optimized. Compared to baseline models, resampled 
datasets, particularly those using hybrid methods, demonstrated better classification accuracy and 
model robustness. 

The findings are consistent with previous studies, such as [31], which identified Random Forest 
as a strong classifier for predicting on-time graduation using the same dataset. However, unlike [31], 
which did not apply any resampling strategies to address data imbalance, this study incorporates five 
different resampling techniques and hyperparameter tuning. This enhancement allows for a more 
realistic and fair model comparison, especially in contexts where class imbalance can lead to biased 
results. Similarly, while [37] introduced the hybrid RUS-ROS approach as a promising solution for 
imbalance problems, their study did not assess its performance across multiple machine learning 
algorithms nor validate its effectiveness through multivariate statistical testing. In contrast, this study 
demonstrates that combining RUS-ROS with Random Forest yields the highest average performance 
score (0.948), making it a highly effective configuration for imbalanced educational datasets. 

A key insight from the performance evaluation is the role of the F1-score, which balances 
precision and recall and is especially important in predicting students who graduate on time, the positive 
class in this study. The results showed that Random Forest achieved the highest F1-score of 0.942 under 
the RUS-ROS combination, indicating its strong ability to accurately identify on-time graduates without 
sacrificing precision or recall. 

This study’s contribution also lies in its methodological rigor. Unlike previous works that relied 
on single-metric evaluations (e.g., [32] using accuracy), this research adopts a multivariate perspective 
by applying PERMANOVA across five key metrics: precision, recall, F1-score, accuracy, and AUC. The use 
of PERMANOVA, complemented by Bonferroni's post-hoc tests and performance visualizations, ensures 
a more robust. 
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Visual analysis using boxplots further supported the statistical findings. Random Forest and 
XGBoost not only achieved the highest median performance but also showed low variability across 
resampling methods. In contrast, AdaBoost exhibited both lower scores and greater inconsistency, 
reinforcing its weaker suitability for the task. 

In summary, this research advances the field of educational data mining by proposing an 
integrated framework that combines advanced resampling, hyperparameter optimization, multivariate 
evaluation, and visual analysis. These innovations enhance the reliability and interpretability of 
predictive models for supporting data-driven academic decision-making, especially in identifying 
students at risk of delayed graduation.  

 
5. CONCLUSION 

This study directly addresses two critical challenges in predicting on-time graduation: the 
presence of class imbalance in educational data and the lack of hyperparameter optimization in prior 
research. By integrating five resampling strategies and seven machine learning algorithms, this work 
systematically evaluates how these factors influence model performance. The results demonstrate that 
the combination of Random Forest and the hybrid RUS-ROS resampling technique yields the highest 
average performance score (0.948), including a notably high F1-score of 0.942, indicating strong 
predictive accuracy for identifying students who graduate on time. These findings are supported by 
rigorous evaluation using both cross-validation and hold-out validation methods. Furthermore, this 
study introduces a multivariate statistical testing framework using PERMANOVA and Bonferroni’s post-
hoc pairwise comparisons, which confirms the significance of performance differences across models. 
These findings contribute to the field of educational data mining by offering a robust methodology for 
handling imbalanced data and optimizing predictive model performance in academic classification tasks. 

While the results are encouraging, they are not without limitations. The reliability of the 
findings is supported by statistical validation, although the R² value of 31.1% suggests that a substantial 
portion of performance variability remains unexplained. Future research could explore more advanced 
resampling methods such as Borderline-SMOTE, ADASYN, or adaptive synthetic techniques to improve 
class balance. The adoption of deep learning architectures, model stacking, or AutoML frameworks may 
also enhance predictive accuracy and scalability in future implementations. 

Finally, the proposed framework may be extended to other educational data mining problems, 
such as dropout prediction, academic risk detection, or early warning systems for student 
disengagement. Applying this methodology to more diverse datasets, particularly those that integrate 
both cognitive and non-cognitive variables, could further strengthen data-driven decision-making in 
higher education institutions. 
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