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Revised April 20 2025’) agricultural cycles, lower yields, and make farming communities more

vulnerable to climatic calamities. However, current weather monitoring
systems frequently fall short of detecting small anomalies in time series
weather data that could serve as early warning signs of such disasters.
This study seeks to close this gap by creating a robust anomaly detection
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methodology adapted to time-dependent weather variables important

Kkeywords: to agriculture. In this study, a hybrid model combining Long Short-Term
Anomaly Detection Memory (LSTM) autoencoder and One-Class Support Vector Machine
LSTM autoencoder (OCSVM) is proposed. The LSTM autoencoder's structure reconstructs
LSTM time series data and signifies anomalies through reconstruction errors
0CSVM (MSE), while OCSVM validates these anomalies to reduce false positives.

The model was applied to daily weather data from East Java spanning
Weather 2015-2024. The results showed that the model effectively detected 11
anomalies in sunlight duration and 7 in rainfall, with F1-scores of 0.71
and 0.82, respectively. Several of these anomalies corresponded to
actual disaster events such as floods, landslides, and droughts. This
research contributed to the field by demonstrating the effectiveness of
combining deep learning and machine learning for weather anomaly
detection. The proposed framework offers valuable insights for early
warning systems and can support local governments and farmers in
improving disaster preparedness and enhancing agricultural resilience
in East Java.
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1. INTRODUCTION

Especially in climate-sensitive areas like East Java, Indonesia, unpredictable weather patterns,
especially with regard to rainfall and sunlight length, have become a significant obstacle to agricultural
productivity. These weather irregularities have the potential to alter agricultural cycles, lower yields,
and make people more susceptible to natural calamities like landslides, floods, and droughts. Therefore,
it is essential to identify these abnormalities early on in order to guarantee agricultural sustainability
and enhance readiness for disasters.
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Anomaly detection, defined as the identification of rare or unexpected patterns within data[1],
has shown promising applications in climate monitoring. However, a lot of conventional methods have
trouble efficiently extracting temporal features, particularly when working with multivariate time-
series data that captures the intricate and ever-changing character of weather systems. Present studies
emphasize the value of machine learning techniques such as One-Class Support Vector Machine
(OCSVM) for anomaly detection and deep learning models, especially Long Short-Term Memory (LSTM)
networks, for capturing temporal relationships. A review of existing methods highlights their strengths
and limitations. For instance, [2] effectively used OCSVM to detect groundwater anomalies but faced
challenges with data dimensionality and temporal modeling. Deep learning methods have shown
significant potential in time series anomaly detection. However, as noted in [3], these models still face
limitations when dealing with high-dimensional multivariate datasets with complex temporal dynamics.
To address this, [4] suggested integrating LSTM networks with anomaly detection for better temporal
feature extraction.

Although each model has its advantages, OCSVM approaches may perform poorly with
sequential data, and LSTM-based models sometimes lack strong decision bounds for outlier
identification[5]. Recent studies have suggested combining OCSVM, which more successfully validates
these anomalies, with LSTM autoencoders, which compress and reconstruct sequential data to highlight
anomalies depending on reconstruction error, in order to overcome these constraints. By utilizing both
robust classification and temporal feature extraction, this hybrid technique allows for more accurate
anomaly detection in agriculture[4].

To identify anomalies in multivariate meteorological time-series data in East Java, this study
suggests a hybrid system that combines an LSTM autoencoder with an OCSVM. It focuses on rainfall and
sunlight length, two important factors that have a big impact on agriculture. The fact that this study uses
actual, unlabeled agricultural weather data rather than labeled or single-variable datasets makes it more
useful for real-world early warning systems than many other studies. In addition to identifying
anomalies when they arise, the model is made to examine trends over time in a variety of variables.

This study illustrates how cutting-edge Al techniques can be used to address actual
environmental and agricultural issues from the standpoint of information systems. The suggested
method provides improved accuracy in identifying anomalies inside intricate, high-dimensional datasets
by fusing deep learning and machine learning approaches. This aligns with the current technology
revolution, where intelligent systems play a growing role in decision-making. The novelty of this study
lies in its ability to support early disaster risk mitigation and promote agricultural resilience, especially
in regions like East Java that are vulnerable to extreme weather.

2. METHOD

2.1. Data Source

The data used in this study is secondary data on sunlight duration (in hours) and rainfall (in
millimeters) in East Java, sourced from the Meteorology, Climatology, and Geophysics Agency (BMKG)
at the East Java Climatology Station. The data set consists of daily records of sunlight duration and
rainfall, with a total of 3,288 entries covering the period from May 1, 2015, to April 30, 2024.

2.1.1 Data Exploration

Tolearn more about the features of the dataset, data exploration was proceeded. This procedure
involved creating descriptive statistics to describe important characteristics such as the mean, standard
deviation, minimum, and maximum values of each meteorological variable. Time series analysis was
also performed to investigate any trends, seasonal patterns, and possible anomalies throughout time.
The purpose of this exploratory stage was to determine the data’s natural behavior, identify any missing
or excessive values, and ensure the data was suitable for further anomaly detection modeling.
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2.1.2 Data Preprocessing

Perform data preprocessing by imputing missing values using data from the Pasuruan and
Malang Geophysics Stations. Linear interpolation (equation 1) [6] was applied for imputing single
missing value, while the LSTM algorithm was for consecutive missing data, as outlined in Table 1 and
based on studies [7] and [5].

FG) = flxg) + 2T (x — xo) (1)
Table 1. Initialization of LSTM Model Hyperparameter for Imputation
Component Parameter Value
General Optimizer Adam
Learning rate 0.0001
Batch size 32
Number of epochs 50
Time steps 180
LSTM LSTM units 50
Activation function Tanh

If there exists any indication of overfitting, dropout or L2 regularization will be applied. Dropout
(0.1) will randomly deactivate 10% of the units during training to reduce dependence on specific
connections and improve generalization [8]. If dropout alone is insufficient, L2 regularization (0.1) will
be used to penalize large weights in the loss function, keeping them small to limit model complexity. This
prevents the model from overfitting to minor details in the training data. L2 regularization is defined in
Equation (2).

L, = Zw} )

Equation (2) calculates the L2 regularization penalty by summing the squares of all weights w, in the
model. The total loss function, which combines the original loss function (MSE) with the L2
regularization penalty, is expressed in Equation (3).

Liotat = MSE + AL, 3)

L;ota1 Tepresents the total loss function, MSE is the original loss function that measures the model’s
prediction error, A is the hyperparameter that controls the magnitude of the penalty for large weights,
and L2 is the L2 regularization penalty [9].

Early stopping is also applied to halt training when the validation loss shows no improvement over
several epochs, preventing overtraining of the model and potential overfitting [10]. Model evaluation is
performed by ensuring there are no signs of overfitting, with close attention to a minimal difference
between training loss and validation loss. Additionally, the lowest RMSE is the main consideration,
indicating that the model performs well in imputing data, as shown in Equation (4) [11].

no N2
MSE = /—Ztﬂ(”’: o (4)

7, represents the predicted value, r; is the observed value, and n is the number of data points.

The data is split into the following parts, May 1, 2015 - April 30, 2022, as the training set and
May 1, 2022 - April 30, 2024, as the test set. Data standardization is also performed using a robust scaler
to ensure all variables have a consistent scale. [12].

2.2. The LSTM autoencoder model

Initializing LSTM autoencoder hyperparameters, such as the number of layers, neurons,
activation functions, and window size, is required to ensure the model's capability to accurately extract
and reconstruct data. Dropout or L2 regularization will be applied if there are indications of overfitting.
Referring to studies by [13], [5], and [4], the LSTM autoencoder hyperparameters are shown in Table 2.
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Table 2. Initialization of Hyperparameter for the LSTM Autoencoder Model

Component Parameter Hyperparameter
General Optimizer Adam
Learning rate 0.0001
Batch size 32
Number of epochs 50
Time steps 180
Encoder LSTM units 50
Activation function Tanh
Decoder LSTM units 50
Activation function Tanh

If overfitting occurs, dropout values between 0.1 and 0.2 will be applied to improve
generalization. If overfitting persists, L2 regularization (0.1-0.2) will penalize large weights, reducing
model complexity. Early stopping will also be used to halt training when validation loss stops improving,
preventing further overfitting.

The process is then continued by training the LSTM autoencoder model on each window using
the training data within the window as input, with a predetermined window length. The model
reconstructs the data following the window, using the best-trained hyperparameter combination on the
test data. The reconstruction error, calculated as |reconstructed data - original data| [19], is then used
as input for anomaly detection with the OCSVM method.

Finally, the model will be evaluated using loss plots and RMSE. Evaluation is conducted by
ensuring a minimal difference between training loss and validation loss to avoid overfitting, while also
considering the smallest RMSE to ensure accurate predictions. A low RMSE value further validates the
model's strong capability to reconstruct data and detect anomalies effectively [20].

2.3. The OCSVM model

Building the OCSVM model involves determining the threshold for early anomaly detection
using the LSTM autoencoder through hyperparameter tuning. Reconstruction errors guide the selection
of Nu (v) and Gamma (y) via grid search, with the kernel function influencing data separation. Gamma
controls the radius of influence, while Nu defines the proportion of anomalies. Percentiles are used to
set thresholds for suspected anomalies in the LSTM autoencoder. Hyperparameter selection, based on
studies [14] and [13], ensures optimal model performance, as outlined in Table 3.

Table 3. Initialization of Hyperparameter for the OCSVM Model

Component Parameter

Optimizer RBF

Learning rate 0.01, 0.03, 0.05, 0.10, 0.50
Batch size 0.01, 0.001

Number of epochs 98, 99

The hyperparameter tuning process optimizes the values of nu, gamma, and the threshold to
achieve the best results, taking into account precision, recall, and F1-score, as demonstrated in
Equations (5), (6), and (7). A high F1-score is prioritized as the main evaluation metric, reflecting the
balance between precision and recall for optimal anomaly detection [13].

Precision = —~— (5)
TP +FP
Recall = —2 (6)
TP + FN
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2 x Precision x Recall
F1 — score = — (7)
Precision + Recall

TP (True Positive) is the number of correctly identified anomalies, TN (True Negative) is the number of
correctly identified normal, FP (False Positive) is the number of incorrectly identified anomalies, and FN
(False Negative) is the number of incorrectly identified normal.

2.4. Detecting Anomalies

The LSTM autoencoder, which finds anomalies based on reconstruction error, was used to
detect anomalies early. Any notable differences between the original and rebuilt data (shown as a high
reconstruction error) are identified as possible anomalies in this approach, which uses a model to try to
recreate the input time-series data. Following a hyperparameter tuning procedure, detection thresholds
were established using percentile values from the reconstruction error distribution. These first
irregularities functioned as suspect labels for additional examination. Time-series graphics that
highlight the points identified as aberrant were developed to help comprehend the temporal distribution
of these anomalies [13].

By using One-Class Support Vector Machine (OCSVM) on the reconstruction error output from
the LSTM autoencoder, anomaly detection was further refined. This method employs OCSVM to enhance
the reliability point classification in high-dimensional space, however it continues to interpret high
reconstruction error values as possible anomalies, consistent with the original method. To confirm
whether the abnormalities were consistent with actual events, the detected anomalies were then
compared to historical records of disaster events, including droughts and floods. This step offered a
contextual assessment of the model's efficacy. For a better comparison, time-series representations
were recreated using the OCSVM-based anomalous points in addition to the disaster events [14].

The performance of the combined LSTM autoencoder-OCSVM model was assessed
quantitatively as the last stage. Precision, recall, and F1-score—standard classification metrics—were
computed using the early suspected anomaly labels. The ROC curve and the Area Under the Curve (AUC)
were also used to evaluate the model's overall performance. The capacity of the model to differentiate
between normal and anomalous data is demonstrated by a high AUC value, which is close to 1.00 [15].
Plotting the anomalous points from the early LSTM detection and the improved OCSVM method
alongside real-world disaster events allowed for visual comparisons and further confirmed the model's
applicability in environmental and agricultural monitoring.

3. RESULT AND DISCUSSION

3.1. Data preprocessing and exploration

The initial data preprocessing involved imputing missing values for sunlight duration and
rainfall in East Java from May 1, 2015, to April 30, 2024. The original dataset consists of 3,228 records
for sunlight duration and 2,952 for rainfall, which increased to 3,288 after imputation. The process
began with data from two nearby units, imputing 37 missing sunlight duration values and 230 for
rainfall. Linear interpolation then imputed 93 missing rainfall points, while no interpolation was needed
for sunlight duration. Finally, the LSTM algorithm estimated 13 consecutive missing points for both
variables, successfully completing the imputation.

Table 4. Optimal Imputation Model Hyperparameters for LSTM of Sunlight Duration and Rainfall

Component Parameter Hyperparameter
Sunlight Duration Rainfall
General Optimizer Adam Adam

Learning rate 0.0001 0.0001

Batch size 32 32

Number of epochs 50 50

Time steps 180 180

LSTM LSTM units 50 50

Activation function Tanh Tanh
Regularization - L2 (0.1)
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Figure 1. Training and validation of the best LSTM imputation model for (a) sunlight duration and (b) rainfall

The LSTM autoencoder model used in this study, as shown in Table 4, was selected from 3
combinations of hyperparameters for sunlight duration and 9 combinations for rainfall, based on the
lowest RMSE and stable loss plots with no signs of overfitting. In Figures 1(a) and 1(b), both the training
loss and validation loss consistently decrease with only small differences, indicating that the selected
LSTM model effectively learns the patterns of sunlight duration and rainfall data, minimizing imputation
errors. The evaluation results of the best model in Table 4 show an RMSE of 0.2590 for sunlight duration
and 0.1324 for rainfall, indicating that the model can reconstruct the data with relatively small errors.

Table 5. Descriptive Statistics of Data Before and After Imputation

Component Parameter Hyperparameter
Sunlight Duration Rainfall
General Optimizer Adam Adam
Learning rate 0.0001 0.0001
Batch size 32 32
Number of epochs 50 50
Time steps 180 180
LSTM LSTM units 50 50
Activation function Tanh Tanh
Regularization - L2 (0.1)

Table 5 shows descriptive statistics before and after imputation. The average daily sunshine
duration slightly changed from 6.2185 hours (SD: 2.8246) to 6.2166 hours (SD: 2.8173), while average
rainfall decreased from 6.6178 mm (SD: 14.0414) to 6.4101 mm (SD: 13.7273). Minimum values
remained at 0.0000, indicating days without sunshine or rainfall. The median sunshine duration stayed
at 6.6000 hours, and median rainfall at 0.0000 mm. Maximum values were 11.3000 hours for sunshine
and 145.0000 mm for rainfall, indicating extreme weather. After imputation, the dataset remained
consistent with 3,288 data points for both variables.

150
ERLU | LIk 125
5 _
c 8 It I ’ E 100
= | |
| £
g e " | ‘ s P '
a I e |
- 4 | £ g | I
2 | 10 i ‘ | E |
BRI > |l A
“ 0 (o AN | \‘ A
2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024
Year Year
(a) (b)

Figure 2. Time series plot (a) sunlight duration and (b) rainfall

Data exploration in Figure 2 shows that sunshine duration and rainfall in East Java display clear
seasonal patterns and significant daily variations. Sunshine duration varies from extremely low to
extremely high, while rainfall fluctuates from light to heavy, both reflect seasonal trends. Recognizing
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these patterns is a critical step for detecting weather anomalies affecting East Java's agriculture. After
imputation and exploration, the data was split into training and testing sets and standardized using a
robust scaler to ensure consistent scale and minimize outlier influence.

3.2. LSTM Autoencoder Modeling

The duration of sunlight and rainfall are used as inputs in the process of modeling an LSTM
autoencoder, where the training data is utilized to train the model. At this stage, time steps are an
important hyperparameter in determining the amount of data used as input for prediction
(reconstruction). Time steps enable the network to leverage information from previous days to create
more accurate predictions [16].

Table 6. Architecture and Best Hyperparameters of the LSTM Autoencoder Model

Component Parameter Hyperparameter
Sunlight Duration Rainfall
General Optimizer Adam Adam
Learning rate 0.0001 0.0001
Batch size 32 32
Number of epochs 50 50
Time steps 30 180
Encoder LSTM units 50 50
Activation function Tanh Tanh
Regularization L2 (0.01) L2 (0.1)
Decoder LSTM units 50 50
Activation function Tanh Tanh
Regularization L2 (0.01) L2 (0.2)

The LSTM autoencoder model, selected from 15 hyperparameter combinations based on the
lowest RMSE and stable loss (Table 6), has two LSTM layers in both the encoder and decoder, extended
by one additional layer. It uses the Adam optimizer with a 0.0001 learning rate, a batch size of 32, and
50 epochs. Time steps are 30 for sunlight duration and 90 for rainfall, with 50 units and Tanh activation
in each LSTM layer. L2 regularization is 0.01 for sunlight duration and 0.02 for rainfall.
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Figure 3. Plot of training and validation loss (a) sunlight duration and (b) rainfall

Figure 3 illustrates that both the training loss and the validation loss consistently decrease for
sunlight duration and rainfall, indicating that the LSTM autoencoder model effectively learns patterns
and minimizes reconstruction errors. The validation loss being slightly higher than the training loss,
along with the small difference between the two, suggests that the model is not overfitting and is capable
of generalizing well. The model's RMSE is 0.6625 for sunlight duration and 2.4559 for rainfall, indicating
relatively small reconstruction errors and good anomaly detection performance.

3.3. Hyperparameter Tuning for OCSVM Model and Threshold for Early Anomaly Detection
Using LSTM Autoencoder

The OCSVM (One-Class Support Vector Machine) modeling was conducted using the
reconstruction error data, in parallel with the hyperparameter tuning via grid search to select the best
gamma and Nu values. The kernel function employed is the RBF (Radial Basis Function). The Nu value
controls the number of data points considered anomalous, while Gamma influences the RBF kernel
function. Grid search is utilized to explore various combinations of Nu and Gamma to identify the optimal
configuration that maximizes anomaly detection.

Table 7. Best Hyperparameter for the OCSVM Model and LSTM Autoencoder Threshold
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Data Parameter Evaluation Metrics
Percentile (%) Gamma Nu F1-score Recall Precision
Sunlight Duration 98 0.01 0.03 0.7096 0.7857 0.6470
Rainfall 99 0.001 0.03 0.8235 1.0000 0.7000

Hyperparameter tuning via grid search for the OCSVM model (Table 7) identified the best
parameters from 20 combinations. For sunlight duration, the optimal parameters were Gamma 0.01 and
Nu 0.03, while for rainfall, Gamma 0.001 and Nu 0.03 were best. A smaller gamma value implies a
broader influence of the training examples, and a Nu value of 0.03 indicates that 3% of the data are
classified as anomalous. The optimal percentiles were 98% for sunlight duration and 99% for rainfall,
capturing 98% and 99% of the data as normal, respectively.

3.4. Initial Anomaly Detection Using LSTM Autoencoder

The determination of the reconstruction error threshold for the LSTM autoencoder is carried
out by considering the final evaluation metrics using OCSVM to ensure accurate anomaly detection. The
threshold is set using the percentile from the distribution of reconstruction errors, based on the results
of hyperparameter tuning.
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Figure 4. Reconstruction error produced by the LSTM autoencoder model on data: (a) sunlight duration and (b) rainfall

Figure 4 illustrates the reconstruction error from sunlight duration and rainfall data. The
hyperparameter tuning yields a threshold of 0.8831 (98th percentile) for sunlight duration, identifying
the top 2% of errors as anomalies, while the threshold for rainfall is 0.2087 (99th percentile), identifying
the top 1% of errors. Figure 5 illustrates that the LSTM autoencoder detected 14 anomalies in sunlight
duration and 7 in rainfall. These anomalies represent data points that deviate from the overall pattern,
rather than merely reflecting extreme values.

As shown in Figure 5, the time series plot, which includes the anomaly points detected by the
LSTM autoencoder for both datasets, demonstrates that the model is able to identify points that
significantly deviate from the normal pattern. This is indicated by high reconstruction errors, suggesting
that the model struggled to reconstruct the data.
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Figure 5. Time series plot showing LSTM autoencoder anomaly points on data: (a) sunlight duration and (b) rainfall
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3.5. Anomaly Detection Using LSTM Autoencoder Reconstruction Error in OCSVM

The hyperparameters used in anomaly detection with LSTM autoencoder reconstruction error
in OCSVM, such as nu and gamma, were determined through a hyperparameter tuning process to ensure
optimal model performance in detecting anomalies. Evaluation with OCSVM shows advanced anomaly
detection results. As seen in Figure 6, the OCSVM model detected a total of 17 anomalies for the sunlight
duration data, while 10 anomalies were detected for the rainfall data.
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Figure 6. Time series plot including OCSVM anomaly points on data (a) sunlight duration and (b) rainfall

Anomaly

In Figure 6, a time series plot is displayed, which includes the anomaly points detected by
OCSVM for both datasets. This plot shows that OCSVM successfully identified more anomaly points
compared to the initial detection using the LSTM autoencoder. This indicates the model's ability to detect
anomalies that may have gone undetected during the initial anomaly detection stage.

3.6. Evaluating of Anomaly Detection Results

Table 8 presents the evaluation metrics for initial anomaly detection using the LSTM
autoencoder and OCSVM on sunlight duration and rainfall data. The model achieved a precision of 0.65,
recall of 0.79, and an F1-score of 0.71 for sunlight duration anomalies at the 98th percentile. For rainfall
anomalies at the 99th percentile, it achieved a precision of 0.70, perfect recall of 1.00, and an F1-score
of 0.82.

Table 8. Best Hyperparameter for the OCSVM Model and LSTM Autoencoder Threshold for Rainfall

Data Percentile (%) Precision Recall F1-score
Sunlight Duration 98 0.65 0.79 0.71
Rainfall 99 0.70 1.00 0.82
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Figure 7. ROC curves and AUC scores for OCSVM anomaly detection on data (a) sunlight duration and (b) rainfall

The ROC curve is key in evaluating anomaly detection performance. In Figure 7, the AUC for
sunlight duration is 0.89, showing strong model performance, while the AUC for rainfall is 1, indicating
perfect accuracy in detecting anomalies. This highlights the model’s excellent results for both rainfall
and sunlight duration.

An AUC close to 1 shows the model’s strong ability to detect anomalies with few false positives.
The ROC curve reflects the balance between true and false positive rates at different thresholds. In
agriculture, accurate anomaly detection aids decision-making and risk management. These results
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confirm that the LSTM autoencoder and OCSVM combination is effective for detecting weather
anomalies, supporting adaptive monitoring and planning in East Java.
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Figure 8. Time series plot including anomaly points from LSTM autoencoder, OCSVM, and their intersection on data: (a) sunlight
duration and (b) rainfall

The final evaluation of anomaly detection using OCSVM (Figure 8) identified 17 anomalies in
sunlight duration and 10 in rainfall. Within this subset, 11 sunlight anomalies and 7 rainfall anomalies
were also detected by the LSTM autoencoder, demonstrating strong concordance between the methods.
However, OCSVM detected 6 additional sunlight anomalies and 3 additional rainfall anomalies that the
LSTM autoencoder missed. This highlights OCSVM’s ability to identify subtle or isolated anomalies that
may not generate large reconstruction errors in the LSTM autoencoder.

Table 9. Disasters in East Java Associated with Peak Monthly Anomalies in Rainfall and Sunlight Duration

Month Disaster

Flood Landslide Extreme Weather Total
January 2023 2 2 9 13
February 2023 9 14 11 34

The results show a clear temporal alignment between weather anomalies and disaster
occurrences in East Java (Table 9). The detected anomalies are contextual, coinciding with increased
disaster frequency. In January 2023, 4 rainfall anomalies were detected, coinciding with 13 reported
disaster events, consisting of 2 floods, 2 landslides, and 9 extreme weather incidents. In February 2023,
11 sunlight duration anomalies were identified, during which 34 disaster events occurred, including 9
floods, 14 landslides, and 11 extreme weather events. These findings show the need for continuous
weather monitoring to anticipate future risks.

Weather-related disasters significantly impact agriculture, particularly in regions highly
dependent on climatic conditions. Floods and landslides damage farmland, causing crop failures and
reducing soil fertility [17]. Extreme weather events, including heavy rainfall, strong winds, and
heatwaves, disrupt plant growth and lower agricultural productivity[18]. These findings emphasize the
importance of ongoing weather analysis to mitigate disaster impacts, ensuring food security and
supporting farmers in East Java.
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3.7. Discussion

This study was designed to address the challenge of identifying weather anomalies that can disrupt
agricultural activities in East Java. Existing monitoring systems are often limited in anticipating irregular
weather conditions early enough to support effective response. The proposed framework combines
LSTM autoencoder and OCSVM to detect anomalies in two key variables—sunlight duration and
rainfall—each tested independently.

The main contribution of this research lies in its two-stage anomaly detection mechanism. By
using LSTM autoencoder to capture temporal deviations and refining the output with OCSVM, the model
reduces the risk of missing critical anomalies, which is crucial in an agricultural context where delayed
responses can cause major losses. Unlike fixed-threshold models, this approach adapts to underlying
data patterns and is more resilient to noise.

The results showed that the majority of detected anomalies occurred in months where disaster
reports increased significantly, indicating that this method is capable of highlighting irregular weather
conditions that align with potential agricultural disruptions. Although not statistically tested for
correlation, this temporal match strengthens the practical value of the findings.

Limitations of this study include the absence of spatially distributed weather data and the
unavailability of labeled anomaly datasets for more robust validation. Future research should explore
applying the model to additional climate variables such as temperature or humidity, deploying it across
different geographic areas, and integrating it into real-time monitoring platforms for early warning
systems.

4. CONCLUSION

This study addresses the growing need for accurate weather anomaly detection to support
agricultural decision-making and reduce the risk of losses due to extreme weather in East Java. By
employing a two-stage framework—LSTM autoencoder for reconstruction-based anomaly scoring and
OCSVM for refined classification—this research offers a novel approach that enhances anomaly
detection accuracy for univariate weather variables. The model achieved strong performance, with an
F1-score of 0.71 for sunlight duration and 0.82 for rainfall. Notably, 11 sunlight anomalies were detected
in February 2023 and 4 rainfall anomalies in January 2023, periods that also recorded high disaster
frequencies. These findings highlight the model’s capability to capture weather irregularities that are
relevant for early warning systems and agricultural planning. The novelty of this research lies in its
integration of deep learning and anomaly detection techniques to create a more adaptive and threshold-
independent system. This approach is particularly useful for regions with limited labeled data and high
seasonal variability. Future work should explore additional climate variables such as temperature or
humidity, test the model’s generalizability in other regions, and implement real-time deployment for
operational use in agriculture and disaster risk management.
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