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Agricultural productivity in East Java is under threat from unpredictable 
and harsh weather patterns, particularly rapid variations in sunlight 
length and rainfall intensity.  These abnormalities can interrupt 
agricultural cycles, lower yields, and make farming communities more 
vulnerable to climatic calamities.  However, current weather monitoring 
systems frequently fall short of detecting small anomalies in time series 
weather data that could serve as early warning signs of such disasters.  
This study seeks to close this gap by creating a robust anomaly detection 
methodology adapted to time-dependent weather variables important 
to agriculture. In this study, a hybrid model combining Long Short-Term 
Memory (LSTM) autoencoder and One-Class Support Vector Machine 
(OCSVM) is proposed. The LSTM autoencoder's structure reconstructs 
time series data and signifies anomalies through reconstruction errors 
(MSE), while OCSVM validates these anomalies to reduce false positives. 
The model was applied to daily weather data from East Java spanning 
2015–2024. The results showed that the model effectively detected 11 
anomalies in sunlight duration and 7 in rainfall, with F1-scores of 0.71 
and 0.82, respectively. Several of these anomalies corresponded to 
actual disaster events such as floods, landslides, and droughts. This 
research contributed to the field by demonstrating the effectiveness of 
combining deep learning and machine learning for weather anomaly 
detection. The proposed framework offers valuable insights for early 
warning systems and can support local governments and farmers in 
improving disaster preparedness and enhancing agricultural resilience 
in East Java. 
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1. INTRODUCTION  

Especially in climate-sensitive areas like East Java, Indonesia, unpredictable weather patterns, 
especially with regard to rainfall and sunlight length, have become a significant obstacle to agricultural 
productivity.  These weather irregularities have the potential to alter agricultural cycles, lower yields, 
and make people more susceptible to natural calamities like landslides, floods, and droughts.  Therefore, 
it is essential to identify these abnormalities early on in order to guarantee agricultural sustainability 
and enhance readiness for disasters. 

http://u.lipi.go.id/1466480524
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Anomaly detection, defined as the identification of rare or unexpected patterns within data[1], 
has shown promising applications in climate monitoring. However, a lot of conventional methods have 
trouble efficiently extracting temporal features, particularly when working with multivariate time-
series data that captures the intricate and ever-changing character of weather systems.  Present studies 
emphasize the value of machine learning techniques such as One-Class Support Vector Machine 
(OCSVM) for anomaly detection and deep learning models, especially Long Short-Term Memory (LSTM) 
networks, for capturing temporal relationships. A review of existing methods highlights their strengths 
and limitations. For instance, [2] effectively used OCSVM to detect groundwater anomalies but faced 
challenges with data dimensionality and temporal modeling. Deep learning methods have shown 
significant potential in time series anomaly detection. However, as noted in [3], these models still face 
limitations when dealing with high-dimensional multivariate datasets with complex temporal dynamics. 
To address this, [4] suggested integrating LSTM networks with anomaly detection for better temporal 
feature extraction. 

Although each model has its advantages, OCSVM approaches may perform poorly with 
sequential data, and LSTM-based models sometimes lack strong decision bounds for outlier 
identification[5].  Recent studies have suggested combining OCSVM, which more successfully validates 
these anomalies, with LSTM autoencoders, which compress and reconstruct sequential data to highlight 
anomalies depending on reconstruction error, in order to overcome these constraints.  By utilizing both 
robust classification and temporal feature extraction, this hybrid technique allows for more accurate 
anomaly detection in agriculture[4]. 

To identify anomalies in multivariate meteorological time-series data in East Java, this study 
suggests a hybrid system that combines an LSTM autoencoder with an OCSVM.  It focuses on rainfall and 
sunlight length, two important factors that have a big impact on agriculture.  The fact that this study uses 
actual, unlabeled agricultural weather data rather than labeled or single-variable datasets makes it more 
useful for real-world early warning systems than many other studies.  In addition to identifying 
anomalies when they arise, the model is made to examine trends over time in a variety of variables. 

This study illustrates how cutting-edge AI techniques can be used to address actual 
environmental and agricultural issues from the standpoint of information systems.  The suggested 
method provides improved accuracy in identifying anomalies inside intricate, high-dimensional datasets 
by fusing deep learning and machine learning approaches.  This aligns with the current technology 
revolution, where intelligent systems play a growing role in decision-making. The novelty of this study 
lies in its ability to support early disaster risk mitigation and promote agricultural resilience, especially 
in regions like East Java that are vulnerable to extreme weather. 
 
2. METHOD 

2.1.  Data Source 

 The data used in this study is secondary data on sunlight duration (in hours) and rainfall (in 
millimeters) in East Java, sourced from the Meteorology, Climatology, and Geophysics Agency (BMKG) 
at the East Java Climatology Station. The data set consists of daily records of sunlight duration and 
rainfall, with a total of 3,288 entries covering the period from May 1, 2015, to April 30, 2024. 
 
2.1.1 Data Exploration 

To learn more about the features of the dataset, data exploration was proceeded. This procedure 
involved creating descriptive statistics to describe important characteristics such as the mean, standard 
deviation, minimum, and maximum values of each meteorological variable.  Time series analysis was 
also performed to investigate any trends, seasonal patterns, and possible anomalies throughout time.  
The purpose of this exploratory stage was to determine the data’s natural behavior, identify any missing 
or excessive values, and ensure the data was suitable for further anomaly detection modeling. 
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2.1.2 Data Preprocessing 
Perform data preprocessing by imputing missing values using data from the Pasuruan and 

Malang Geophysics Stations. Linear interpolation (equation 1) [6] was applied for imputing single 
missing value, while the LSTM algorithm was for consecutive missing data, as outlined in Table 1 and 
based on studies [7] and [5]. 

 

𝒇(𝒙)  =  𝒇(𝒙𝒐) + 
𝒇(𝒙𝟏)−𝒇(𝒙𝟎)

𝒙𝟏− 𝒙𝟎
(𝒙 − 𝒙𝟎)                    (1) 

 
Table 1. Initialization of LSTM Model Hyperparameter for Imputation 

Component Parameter Value 
General Optimizer Adam 
 Learning rate 0.0001 
 Batch size 32 
 Number of epochs 50 
 Time steps 180 
LSTM LSTM units 50 

Activation function Tanh 
 

If there exists any indication of overfitting, dropout or L2 regularization will be applied. Dropout 
(0.1) will randomly deactivate 10% of the units during training to reduce dependence on specific 
connections and improve generalization [8]. If dropout alone is insufficient, L2 regularization (0.1) will 
be used to penalize large weights in the loss function, keeping them small to limit model complexity. This 
prevents the model from overfitting to minor details in the training data. L2 regularization is defined in 
Equation (2). 

𝑳𝟐 =  𝜮𝒕𝑤𝑡
2                (2) 

Equation (2) calculates the L2 regularization penalty by summing the squares of all weights 𝒘𝒕  in the 
model. The total loss function, which combines the original loss function (MSE) with the L2 
regularization penalty, is expressed in Equation (3). 
 

𝑳𝒕𝒐𝒕𝒂𝒍 =  𝑴𝑺𝑬 +  𝝀 𝑳𝟐                              (3) 
 
𝑳𝒕𝒐𝒕𝒂𝒍  represents the total loss function, 𝑴𝑺𝑬 is the original loss function that measures the model’s 
prediction error, 𝜆 is the hyperparameter that controls the magnitude of the penalty for large weights, 
and 𝑳𝟐 is the L2 regularization penalty [9]. 
Early stopping is also applied to halt training when the validation loss shows no improvement over 
several epochs, preventing overtraining of the model and potential overfitting [10]. Model evaluation is 
performed by ensuring there are no signs of overfitting, with close attention to a minimal difference 
between training loss and validation loss. Additionally, the lowest RMSE is the main consideration, 
indicating that the model performs well in imputing data, as shown in Equation (4) [11]. 
 

𝑴𝑺𝑬 =  √∑ (𝒓𝒕̂−𝒓𝒕)𝟐𝒏
𝒕=𝟏

𝒏
                                            (4) 

 
𝒓𝒕̂  represents the predicted value, 𝒓𝒕 is the observed value, and 𝒏 is the number of data points. 

The data is split into the following parts, May 1, 2015 – April 30, 2022, as the training set and 
May 1, 2022 – April 30, 2024, as the test set. Data standardization is also performed using a robust scaler 
to ensure all variables have a consistent scale. [12]. 
 

2.2.  The LSTM autoencoder model 

Initializing LSTM autoencoder hyperparameters, such as the number of layers, neurons, 
activation functions, and window size, is required to ensure the model's capability to accurately extract 
and reconstruct data. Dropout or L2 regularization will be applied if there are indications of overfitting. 
Referring to studies by [13], [5], and [4], the LSTM autoencoder hyperparameters are shown in Table 2. 
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Table 2. Initialization of Hyperparameter for the LSTM Autoencoder Model 

Component Parameter Hyperparameter 
General Optimizer Adam 
 Learning rate 0.0001 
 Batch size 32 
 Number of epochs 50 
 Time steps 180 
Encoder LSTM units 50 

Activation function Tanh 
Decoder LSTM units 50 

Activation function Tanh 
 

If overfitting occurs, dropout values between 0.1 and 0.2 will be applied to improve 
generalization. If overfitting persists, L2 regularization (0.1–0.2) will penalize large weights, reducing 
model complexity. Early stopping will also be used to halt training when validation loss stops improving, 
preventing further overfitting. 

The process is then continued by training the LSTM autoencoder model on each window using 
the training data within the window as input, with a predetermined window length. The model 
reconstructs the data following the window, using the best-trained hyperparameter combination on the 
test data. The reconstruction error, calculated as |reconstructed data – original data| [19], is then used 
as input for anomaly detection with the OCSVM method. 

Finally, the model will be evaluated using loss plots and RMSE. Evaluation is conducted by 
ensuring a minimal difference between training loss and validation loss to avoid overfitting, while also 
considering the smallest RMSE to ensure accurate predictions. A low RMSE value further validates the 
model's strong capability to reconstruct data and detect anomalies effectively [20]. 
 

2.3.  The OCSVM model 

Building the OCSVM model involves determining the threshold for early anomaly detection 
using the LSTM autoencoder through hyperparameter tuning. Reconstruction errors guide the selection 
of Nu (𝜈) and Gamma (γ) via grid search, with the kernel function influencing data separation. Gamma 
controls the radius of influence, while Nu defines the proportion of anomalies. Percentiles are used to 
set thresholds for suspected anomalies in the LSTM autoencoder. Hyperparameter selection, based on 
studies [14] and [13], ensures optimal model performance, as outlined in Table 3. 
 

Table 3. Initialization of Hyperparameter for the OCSVM Model 

Component Parameter 
Optimizer RBF 
Learning rate 0.01, 0.03, 0.05, 0.10, 0.50 
Batch size 0.01, 0.001 
Number of epochs 98, 99 
  

The hyperparameter tuning process optimizes the values of nu, gamma, and the threshold to 
achieve the best results, taking into account precision, recall, and F1-score, as demonstrated in 
Equations (5), (6), and (7). A high F1-score is prioritized as the main evaluation metric, reflecting the 
balance between precision and recall for optimal anomaly detection [13]. 
 

𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 =
𝑻𝑷

𝑻𝑷 + 𝑭𝑷
                             (5) 

 

𝑹𝒆𝒄𝒂𝒍𝒍 =
𝑻𝑷

𝑻𝑷 + 𝑭𝑵
                                                                       (6) 
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𝑭𝟏 − 𝒔𝒄𝒐𝒓𝒆 =
𝟐 × 𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 × 𝑹𝒆𝒄𝒂𝒍𝒍

𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 + 𝑹𝒆𝒄𝒂𝒍𝒍
                                        (7) 

 
TP (True Positive) is the number of correctly identified anomalies, TN (True Negative) is the number of 
correctly identified normal, FP (False Positive) is the number of incorrectly identified anomalies, and FN 
(False Negative) is the number of incorrectly identified normal. 

2.4.  Detecting Anomalies 

The LSTM autoencoder, which finds anomalies based on reconstruction error, was used to 
detect anomalies early. Any notable differences between the original and rebuilt data (shown as a high 
reconstruction error) are identified as possible anomalies in this approach, which uses a model to try to 
recreate the input time-series data. Following a hyperparameter tuning procedure, detection thresholds 
were established using percentile values from the reconstruction error distribution. These first 
irregularities functioned as suspect labels for additional examination. Time-series graphics that 
highlight the points identified as aberrant were developed to help comprehend the temporal distribution 
of these anomalies [13]. 

By using One-Class Support Vector Machine (OCSVM) on the reconstruction error output from 
the LSTM autoencoder, anomaly detection was further refined.  This method employs OCSVM to enhance 
the reliability point classification in high-dimensional space, however it continues to interpret high 
reconstruction error values as possible anomalies, consistent with the original method.  To confirm 
whether the abnormalities were consistent with actual events, the detected anomalies were then 
compared to historical records of disaster events, including droughts and floods.  This step offered a 
contextual assessment of the model's efficacy.  For a better comparison, time-series representations 
were recreated using the OCSVM-based anomalous points in addition to the disaster events [14]. 

The performance of the combined LSTM autoencoder–OCSVM model was assessed 
quantitatively as the last stage. Precision, recall, and F1-score—standard classification metrics—were 
computed using the early suspected anomaly labels. The ROC curve and the Area Under the Curve (AUC) 
were also used to evaluate the model's overall performance. The capacity of the model to differentiate 
between normal and anomalous data is demonstrated by a high AUC value, which is close to 1.00 [15]. 
Plotting the anomalous points from the early LSTM detection and the improved OCSVM method 
alongside real-world disaster events allowed for visual comparisons and further confirmed the model's 
applicability in environmental and agricultural monitoring. 
 
3. RESULT AND DISCUSSION 

3.1.  Data preprocessing and exploration 

The initial data preprocessing involved imputing missing values for sunlight duration and 
rainfall in East Java from May 1, 2015, to April 30, 2024. The original dataset consists of 3,228 records 
for sunlight duration and 2,952 for rainfall, which increased to 3,288 after imputation. The process 
began with data from two nearby units, imputing 37 missing sunlight duration values and 230 for 
rainfall. Linear interpolation then imputed 93 missing rainfall points, while no interpolation was needed 
for sunlight duration. Finally, the LSTM algorithm estimated 13 consecutive missing points for both 
variables, successfully completing the imputation. 

 

Table 4. Optimal Imputation Model Hyperparameters for LSTM of Sunlight Duration and Rainfall 

Component Parameter Hyperparameter 

Sunlight Duration Rainfall 
General Optimizer Adam Adam 

 Learning rate 0.0001 0.0001 
 Batch size 32 32 
 Number of epochs 50 50 
 Time steps 180 180 

LSTM LSTM units 50 50 
Activation function Tanh Tanh 

Regularization - L2 (0.1) 
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(a) (b) 

Figure 1. Training and validation of the best LSTM imputation model for (a) sunlight duration and (b) rainfall 

 
The LSTM autoencoder model used in this study, as shown in Table 4, was selected from 3 

combinations of hyperparameters for sunlight duration and 9 combinations for rainfall, based on the 
lowest RMSE and stable loss plots with no signs of overfitting. In Figures 1(a) and 1(b), both the training 
loss and validation loss consistently decrease with only small differences, indicating that the selected 
LSTM model effectively learns the patterns of sunlight duration and rainfall data, minimizing imputation 
errors. The evaluation results of the best model in Table 4 show an RMSE of 0.2590 for sunlight duration 
and 0.1324 for rainfall, indicating that the model can reconstruct the data with relatively small errors. 

 

Table 5. Descriptive Statistics of Data Before and After Imputation 

Component Parameter Hyperparameter 
Sunlight Duration Rainfall 

General Optimizer Adam Adam 
 Learning rate 0.0001 0.0001 
 Batch size 32 32 
 Number of epochs 50 50 
 Time steps 180 180 

LSTM LSTM units 50 50 
Activation function Tanh Tanh 

Regularization - L2 (0.1) 

 
Table 5 shows descriptive statistics before and after imputation. The average daily sunshine 

duration slightly changed from 6.2185 hours (SD: 2.8246) to 6.2166 hours (SD: 2.8173), while average 
rainfall decreased from 6.6178 mm (SD: 14.0414) to 6.4101 mm (SD: 13.7273). Minimum values 
remained at 0.0000, indicating days without sunshine or rainfall. The median sunshine duration stayed 
at 6.6000 hours, and median rainfall at 0.0000 mm. Maximum values were 11.3000 hours for sunshine 
and 145.0000 mm for rainfall, indicating extreme weather. After imputation, the dataset remained 
consistent with 3,288 data points for both variables. 

 

 (a)  (b) 

Figure 2. Time series plot (a) sunlight duration and (b) rainfall 

 
Data exploration in Figure 2 shows that sunshine duration and rainfall in East Java display clear 

seasonal patterns and significant daily variations. Sunshine duration varies from extremely low to 
extremely high, while rainfall fluctuates from light to heavy, both reflect seasonal trends. Recognizing 

http://u.lipi.go.id/1466480524
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these patterns is a critical step for detecting weather anomalies affecting East Java's agriculture. After 
imputation and exploration, the data was split into training and testing sets and standardized using a 
robust scaler to ensure consistent scale and minimize outlier influence.  

3.2.  LSTM Autoencoder Modeling 

The duration of sunlight and rainfall are used as inputs in the process of modeling an LSTM 
autoencoder, where the training data is utilized to train the model. At this stage, time steps are an 
important hyperparameter in determining the amount of data used as input for prediction 
(reconstruction). Time steps enable the network to leverage information from previous days to create 
more accurate predictions [16]. 

Table 6. Architecture and Best Hyperparameters of the LSTM Autoencoder Model 

Component Parameter Hyperparameter 
Sunlight Duration Rainfall 

General Optimizer Adam Adam 
 Learning rate 0.0001 0.0001 
 Batch size 32 32 
 Number of epochs 50 50 
 Time steps 30 180 

Encoder LSTM units 50 50 
Activation function Tanh Tanh 

Regularization L2 (0.01) L2 (0.1) 
Decoder LSTM units 50 50 

 Activation function Tanh Tanh 
 Regularization L2 (0.01) L2 (0.2) 

 
The LSTM autoencoder model, selected from 15 hyperparameter combinations based on the 

lowest RMSE and stable loss (Table 6), has two LSTM layers in both the encoder and decoder, extended 
by one additional layer. It uses the Adam optimizer with a 0.0001 learning rate, a batch size of 32, and 
50 epochs. Time steps are 30 for sunlight duration and 90 for rainfall, with 50 units and Tanh activation 
in each LSTM layer. L2 regularization is 0.01 for sunlight duration and 0.02 for rainfall. 
 

 (a)  (b) 

Figure 3. Plot of training and validation loss (a) sunlight duration and (b) rainfall 

Figure 3 illustrates that both the training loss and the validation loss consistently decrease for 
sunlight duration and rainfall, indicating that the LSTM autoencoder model effectively learns patterns 
and minimizes reconstruction errors. The validation loss being slightly higher than the training loss, 
along with the small difference between the two, suggests that the model is not overfitting and is capable 
of generalizing well. The model's RMSE is 0.6625 for sunlight duration and 2.4559 for rainfall, indicating 
relatively small reconstruction errors and good anomaly detection performance. 

3.3.  Hyperparameter Tuning for OCSVM Model and Threshold for Early Anomaly Detection 
Using LSTM Autoencoder 

The OCSVM (One-Class Support Vector Machine) modeling was conducted using the 
reconstruction error data, in parallel with the hyperparameter tuning via grid search to select the best 
gamma and Nu values. The kernel function employed is the RBF (Radial Basis Function). The Nu value 
controls the number of data points considered anomalous, while Gamma influences the RBF kernel 
function. Grid search is utilized to explore various combinations of Nu and Gamma to identify the optimal 
configuration that maximizes anomaly detection. 

 

Table 7. Best Hyperparameter for the OCSVM Model and LSTM Autoencoder Threshold 
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Data Parameter Evaluation Metrics 
Percentile (%) Gamma Nu F1-score Recall Precision 

Sunlight Duration 98 0.01 0.03 0.7096 0.7857 0.6470 
Rainfall 99 0.001 0.03 0.8235 1.0000 0.7000 

 
Hyperparameter tuning via grid search for the OCSVM model (Table 7) identified the best 

parameters from 20 combinations. For sunlight duration, the optimal parameters were Gamma 0.01 and 
Nu 0.03, while for rainfall, Gamma 0.001 and Nu 0.03 were best. A smaller gamma value implies a 
broader influence of the training examples, and a Nu value of 0.03 indicates that 3% of the data are 
classified as anomalous. The optimal percentiles were 98% for sunlight duration and 99% for rainfall, 
capturing 98% and 99% of the data as normal, respectively. 

3.4.  Initial Anomaly Detection Using LSTM Autoencoder 

The determination of the reconstruction error threshold for the LSTM autoencoder is carried 
out by considering the final evaluation metrics using OCSVM to ensure accurate anomaly detection. The 
threshold is set using the percentile from the distribution of reconstruction errors, based on the results 
of hyperparameter tuning. 

 

 (a)  (b) 

Figure 4. Reconstruction error produced by the LSTM autoencoder model on data: (a) sunlight duration and (b) rainfall 

 
Figure 4 illustrates the reconstruction error from sunlight duration and rainfall data. The 

hyperparameter tuning yields a threshold of 0.8831 (98th percentile) for sunlight duration, identifying 
the top 2% of errors as anomalies, while the threshold for rainfall is 0.2087 (99th percentile), identifying 
the top 1% of errors. Figure 5 illustrates that the LSTM autoencoder detected 14 anomalies in sunlight 
duration and 7 in rainfall. These anomalies represent data points that deviate from the overall pattern, 
rather than merely reflecting extreme values. 

As shown in Figure 5, the time series plot, which includes the anomaly points detected by the 
LSTM autoencoder for both datasets, demonstrates that the model is able to identify points that 
significantly deviate from the normal pattern. This is indicated by high reconstruction errors, suggesting 
that the model struggled to reconstruct the data. 

 

(a) (b) 

Figure 5. Time series plot showing LSTM autoencoder anomaly points on data: (a) sunlight duration and (b) rainfall 

http://u.lipi.go.id/1466480524
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3.5.  Anomaly Detection Using LSTM Autoencoder Reconstruction Error in OCSVM 

The hyperparameters used in anomaly detection with LSTM autoencoder reconstruction error 
in OCSVM, such as nu and gamma, were determined through a hyperparameter tuning process to ensure 
optimal model performance in detecting anomalies. Evaluation with OCSVM shows advanced anomaly 
detection results. As seen in Figure 6, the OCSVM model detected a total of 17 anomalies for the sunlight 
duration data, while 10 anomalies were detected for the rainfall data. 

 

 (a)  (b) 

Figure 6. Time series plot including OCSVM anomaly points on data (a) sunlight duration and (b) rainfall 

 
In Figure 6, a time series plot is displayed, which includes the anomaly points detected by 

OCSVM for both datasets. This plot shows that OCSVM successfully identified more anomaly points 
compared to the initial detection using the LSTM autoencoder. This indicates the model's ability to detect 
anomalies that may have gone undetected during the initial anomaly detection stage. 

3.6.  Evaluating of Anomaly Detection Results 

Table 8 presents the evaluation metrics for initial anomaly detection using the LSTM 
autoencoder and OCSVM on sunlight duration and rainfall data. The model achieved a precision of 0.65, 
recall of 0.79, and an F1-score of 0.71 for sunlight duration anomalies at the 98th percentile. For rainfall 
anomalies at the 99th percentile, it achieved a precision of 0.70, perfect recall of 1.00, and an F1-score 
of 0.82. 
 

Table 8. Best Hyperparameter for the OCSVM Model and LSTM Autoencoder Threshold for Rainfall 

Data Percentile (%) Precision Recall F1-score 
Sunlight Duration 98 0.65 0.79 0.71 
Rainfall 99 0.70 1.00 0.82 

 

 (a)  (b) 

Figure 7. ROC curves and AUC scores for OCSVM anomaly detection on data (a) sunlight duration and (b) rainfall 

 
The ROC curve is key in evaluating anomaly detection performance. In Figure 7, the AUC for 

sunlight duration is 0.89, showing strong model performance, while the AUC for rainfall is 1, indicating 
perfect accuracy in detecting anomalies. This highlights the model’s excellent results for both rainfall 
and sunlight duration. 

An AUC close to 1 shows the model’s strong ability to detect anomalies with few false positives. 
The ROC curve reflects the balance between true and false positive rates at different thresholds. In 
agriculture, accurate anomaly detection aids decision-making and risk management. These results 
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confirm that the LSTM autoencoder and OCSVM combination is effective for detecting weather 
anomalies, supporting adaptive monitoring and planning in East Java. 

 

 
(a) 

 
(b) 

Figure 8. Time series plot including anomaly points from LSTM autoencoder, OCSVM, and their intersection on data: (a) sunlight            
duration and (b) rainfall 

 
The final evaluation of anomaly detection using OCSVM (Figure 8) identified 17 anomalies in 

sunlight duration and 10 in rainfall. Within this subset, 11 sunlight anomalies and 7 rainfall anomalies 
were also detected by the LSTM autoencoder, demonstrating strong concordance between the methods. 
However, OCSVM detected 6 additional sunlight anomalies and 3 additional rainfall anomalies that the 
LSTM autoencoder missed. This highlights OCSVM’s ability to identify subtle or isolated anomalies that 
may not generate large reconstruction errors in the LSTM autoencoder. 

 

Table 9. Disasters in East Java Associated with Peak Monthly Anomalies in Rainfall and Sunlight Duration 

Month 
Disaster 

Flood Landslide Extreme Weather Total 
January 2023 2 2 9 13 
February 2023 9 14 11 34 

 
The results show a clear temporal alignment between weather anomalies and disaster 

occurrences in East Java (Table 9). The detected anomalies are contextual, coinciding with increased 
disaster frequency. In January 2023, 4 rainfall anomalies were detected, coinciding with 13 reported 
disaster events, consisting of 2 floods, 2 landslides, and 9 extreme weather incidents. In February 2023, 
11 sunlight duration anomalies were identified, during which 34 disaster events occurred, including 9 
floods, 14 landslides, and 11 extreme weather events. These findings show the need for continuous 
weather monitoring to anticipate future risks. 

Weather-related disasters significantly impact agriculture, particularly in regions highly 
dependent on climatic conditions. Floods and landslides damage farmland, causing crop failures and 
reducing soil fertility [17]. Extreme weather events, including heavy rainfall, strong winds, and 
heatwaves, disrupt plant growth and lower agricultural productivity[18]. These findings emphasize the 
importance of ongoing weather analysis to mitigate disaster impacts, ensuring food security and 
supporting farmers in East Java. 

http://u.lipi.go.id/1466480524
http://u.lipi.go.id/1464049910


 
JOIN | Volume 10 No. 1 | June 2025: 227-238  

 

 

 
 237 
 

3.7.  Discussion 

This study was designed to address the challenge of identifying weather anomalies that can disrupt 
agricultural activities in East Java. Existing monitoring systems are often limited in anticipating irregular 
weather conditions early enough to support effective response. The proposed framework combines 
LSTM autoencoder and OCSVM to detect anomalies in two key variables—sunlight duration and 
rainfall—each tested independently. 

The main contribution of this research lies in its two-stage anomaly detection mechanism. By 
using LSTM autoencoder to capture temporal deviations and refining the output with OCSVM, the model 
reduces the risk of missing critical anomalies, which is crucial in an agricultural context where delayed 
responses can cause major losses. Unlike fixed-threshold models, this approach adapts to underlying 
data patterns and is more resilient to noise. 

The results showed that the majority of detected anomalies occurred in months where disaster 
reports increased significantly, indicating that this method is capable of highlighting irregular weather 
conditions that align with potential agricultural disruptions. Although not statistically tested for 
correlation, this temporal match strengthens the practical value of the findings. 

Limitations of this study include the absence of spatially distributed weather data and the 
unavailability of labeled anomaly datasets for more robust validation. Future research should explore 
applying the model to additional climate variables such as temperature or humidity, deploying it across 
different geographic areas, and integrating it into real-time monitoring platforms for early warning 
systems. 
 
4. CONCLUSION 

This study addresses the growing need for accurate weather anomaly detection to support 
agricultural decision-making and reduce the risk of losses due to extreme weather in East Java. By 
employing a two-stage framework—LSTM autoencoder for reconstruction-based anomaly scoring and 
OCSVM for refined classification—this research offers a novel approach that enhances anomaly 
detection accuracy for univariate weather variables. The model achieved strong performance, with an 
F1-score of 0.71 for sunlight duration and 0.82 for rainfall. Notably, 11 sunlight anomalies were detected 
in February 2023 and 4 rainfall anomalies in January 2023, periods that also recorded high disaster 
frequencies. These findings highlight the model’s capability to capture weather irregularities that are 
relevant for early warning systems and agricultural planning. The novelty of this research lies in its 
integration of deep learning and anomaly detection techniques to create a more adaptive and threshold-
independent system. This approach is particularly useful for regions with limited labeled data and high 
seasonal variability. Future work should explore additional climate variables such as temperature or 
humidity, test the model’s generalizability in other regions, and implement real-time deployment for 
operational use in agriculture and disaster risk management. 
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