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High-Performance Computing (HPC) plays a crucial role in accelerating 
scientific advancement across numerous fields of research and in 
effectively implementing various complex scientific applications. 
Mahameru is one of the largest national HPC systems in Indonesia and 
has been utilized by many sectors. However, it has not undergone 
proper benchmarking evaluation, which is vital for identifying issues 
related to hardware and software configurations and confirming system 
reliability. Therefore, this study aims to evaluate the performance, 
efficiency, and capabilities of Mahameru. We present a benchmarking 
system on Mahameru utilizing two benchmark suites: the NAS Parallel 
Benchmarks (NPB) and the high-performance conjugate gradient 
(HPCG) benchmark. Our results indicate that the NPB exhibits a lower 
speedup in Message Passing Interface (MPI) compared to OpenMP, 
which can be attributed to the communication overhead and the nature 
of the computational tasks. Additionally, the HPCG benchmark 
demonstrates that Mahameru performance can compete with the lower 
tiers of the Top 500 supercomputers. When operating at full capacity, 
Mahameru can achieve approximately 2.5% of its theoretical peak 
performance. While the system generally performs reliably with parallel 
algorithms, it may not fully leverage hyperthreading with certain 
algorithms. This benchmark result can serve as a basis for decision-
making regarding potential upgrades or changes to a system. 
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1. INTRODUCTION 

The development of High-Performance Computing (HPC) facilities in the National Research and 
Innovation Agency (BRIN) named Mahameru BRIN HPC was started in 2023 by integrating existing 
computing servers and the establishment of a new HPC system. It has served various high-performance 
computing requests from many research fields.  As one of the national research facilities, the Mahameru 
BRIN HPC is open for Indonesian researchers. Before the establishment of Mahameru BRIN HPC, the first 
generation, referred to as Gen 1, was initiated by the Indonesian Institute of Sciences (LIPI) and utilized 
a Fujitsu system featuring the Sandy Bridge architecture in 2014. Moving forward to the second 
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generation, known as Gen 2, which was still under the authority of LIPI, it was transitioned to an HP 
system in 2018 that was built on Broadwell architecture. Subsequently, the third generation (Gen 3) was 
also a product of LIPI and utilized a Dell system that was implemented in 2019, showcasing the Skylake 
architecture. The fourth generation, Gen 4, was then built during the BRIN era and known as Mahameru 
BRIN HPC. It was characterized by the adoption of a Lenovo system that was rolled out in 2023, featuring 
the Icelake architecture, which has been designed to significantly enhance performance and efficiency. 
Within many years of HPC development, the HPC system has not been subjected to any benchmarking 
assessments, leaving awareness of the actual performance metrics and capabilities of these advanced 
computing systems. 

Benchmarking HPC systems is essential for various reasons, primarily to investigate 
performance evaluation, guide system design, and improve productivity. By establishing standardized 
metrics and methodologies, benchmarking facilitates the comparison of different systems and identifies 
performance bottlenecks, ultimately leading to more informed decisions regarding hardware and 
software configurations. Benchmarks simulate specific workloads, allowing for the assessment of 
system capabilities and performance under realistic conditions [1]. Benchmarking provides critical 
insights into system architecture, helping designers optimize configurations for specific workloads, such 
as those seen in scientific computing and Artificial Intelligence (AI) applications [2]. Effective 
benchmarking can measure HPC productivity by correlating mission goals with resource utilization, thus 
enabling more efficient scientific outcomes [3]. A public repository of productivity benchmarks can 
standardize assessments across the HPC community, fostering collaboration and innovation [3]. 
Specifically, benchmarking is beneficial for users, administrators, and management. Users can get an 
overview of the system’s performance, so they can adjust the configuration of their applications to make 
them more optimal. Administrators can find the strengths and weaknesses of the systems, reveal the 
bottleneck, and get an overview of properties that are related and unrelated to expectations of system 
performance. For management, benchmarking provides policy consideration of the use of the HPC 
system and a basis for future system design development. There are various HPC benchmarking 
frameworks had been conducted in many different HPC facilities, for example Taub and TianHe-2 [4][5],  
Egyptian National HPC Grid (EN-HPCG) [6], University of Luxembourg HPC [7], Barcelona 
Supercomputing Center [8], and Fugaku [9][10][11]. Other benchmarks for specific architectures were 
also investigated previously, for example, Intel Xeon with Xilinx Alveo U280 [12] and Intel x86 server 
CPU architecture with Broadwell EP and Cascade Lake SP [13]. 

HPC benchmarks can be categorized into two primary types: system/synthetic and application 
benchmarks. Synthetic benchmarks evaluate the performance of hardware components and 
configurations. The benchmark measures the theoretical peak performance of CPU, memory, network, 
and storage components [14], for example Taub and TianHe-2 supercomputers benchmark presented 
in [4]. Meanwhile, application benchmarks evaluate the configuration and performance of specific 
applications on HPC systems, for instance, I/O parallel libraries used in RegCM [15]. Various benchmark 
suites are accessible to evaluate the efficacy of an entire system and its constituent subsystems, and each 
of these tools presents its own set of benefits and drawbacks [16].  

Addressing the critical gap that no prior benchmark has been applied. This study presents the 
first-ever application of the synthetic benchmark to evaluate the performance, efficiency, and 
capabilities of Mahameru BRIN HPC. This provides the first comprehensive insights about the 
performance baseline, the architectural strengths and weaknesses, the optimum configuration, and the 
basis for future system development. To do so, this study uses two benchmark suites: NAS Parallel 
Benchmarks (NPB) and High-Performance Conjugate Gradients (HPCG) Benchmark [21][22]. 

The subsequent sections of this paper are structured as follows: Section 2 describes the 
hardware and software of Mahameru HPC BRIN, the benchmark suites, the experiments design, and 
evaluation metrics used in Mahameru HPC BRIN benchmark; Section 3 presents the results along with a 
discussion; and finally, Section 4 encapsulates the conclusions and explores potential future work. 

 
2. METHODS 

2.1. Mahameru HPC Specification 
In this section, we present the specifications of the Mahameru and its management system. 

Mahameru's architecture is given in Figure 1. A user can connect to Mahameru’s login node through a 
secure connection by providing the user's credentials and the user’s machine's credentials. Once the 
user connects to the login node, the user can hop to the management node to use computing resources 
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available at the Mahameru system. The Mahameru HPC uses SLURM as HPC workload management [19]. 
The Mahameru HPC has several resource partitions to accommodate different computing requirements, 
such as short, medium, or long time of running times and modes of parallelism for single or multi-node. 

Regarding software module management in Mahameru HPC, and since Mahameru HPC is 
intended to provide computing resources to a broad spectrum of research, module systems are being 
installed to manage different software module sets for typical computing requirements in various 
research fields. The Mahameru HPC also served as a computing facility for sequencing and a Cryo-EM 
laboratorium facility at BRIN. The Mahameru BRIN HPC was deployed with the operating system of Red 
Hat Enterprise Linux 8.9 and specifications as shown in Table 1. All nodes in Mahameru are connected 
through a high-speed Infiniband with a bandwidth 2 x 100 Gbps network with a spine-leaf configuration 
to ensure reduced network latency and hop count, increasing network efficiency. Mahameru also uses 
an IBM GPFS (SpectrumScale) high-performance storage cluster mounted as a filesystem across master 
and computing nodes with Journal Storage and High-Density Storage with a total usage capacity of 6 
Petabytes.  Computing resources based on GPU servers are also integrated into the Mahameru BRIN HPC. 
We provide GPU cards like DGX A100 and DGX A1. 

 

 
Figure 1. Overall Mahameru HPC System Architecture. 

 

Table 1. Hardware specification of Mahameru High-Performance Computing System 

 Computing Node High-Memory node 
Processors 2 x Xeon Gold 6338 (2 GHz, Turbo 3.2/2.6 GHz, 

32 cores, 64 threads, L3 48 MB, L2 40MB, L1 1 
MB/1.5 MB) 

8 x Xeon Gold 8280 (2.7 GHz, Turbo 3.2/2.6 GHz, 
28 cores, 64 threads, L3 48 MB, L2 40MB, L1 1 
MB/1.5 MB) 

Memory 256 GB, DDR4-3200 MHz, 8 channel 1536 GB, DDR4-2933 MHz, 8 channel 
Number of nodes 92 nodes 1 node 

 
2.2. NAS Parallel Benchmark (NPB) 

The NAS Parallel Benchmarks (NPB) is a collection of programs designed to evaluate the 
performance of parallel supercomputers [17]. Developed by the NASA Advanced Supercomputing (NAS) 
Division, the benchmarks are based on computational fluid dynamics (CFD) applications and are widely 
used in the HPC community to assess system capabilities. 

The NPB suite is important for benchmarking HPC infrastructures because of its ability to 
simulate real-world computational workloads. By running these benchmarks, researchers can assess 
computational performance that can evaluate the raw computational power of the system, including 
processor speed and floating-point operation capabilities; measure memory hierarchy efficiency by 
examining how efficiently the system handles memory operations, including cache utilization and 
memory bandwidth; and evaluate communication mechanisms by testing the interconnect performance, 
including latency and bandwidth, which is crucial for parallel applications that require frequent data 
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exchanges. The original NPB suite, NPB 1, was a "pencil-and-paper" specification that outlined five 
computational kernels and three pseudo-applications to solve the 3D Navier-Stokes system for 
incompressible flow [17], as presented in Table 2. They are included in the BT, SP, and LU modules. The 
Block Tri-diagonal (BT) uses an implicit algorithm based on Alternating Direction Implicit (ADI) 
factorization; the Scalar Penta-diagonal (SP) uses Beam-Warming approximate factorization to 
decompose the 3D matrix; and the Lower-Upper Gauss-Seidel (LU) uses the Symmetric Successive Over-
Relaxation method. These benchmarks were designed to mimic large-scale CFD applications' 
computation and data movement characteristics, providing a standardized method for comparing 
different HPC systems.  

As HPC technologies advanced, the NPB suite evolved to reflect these changes. NPB 2 introduced 
reference implementations in popular parallel programming models such as MPI (Message Passing 
Interface), making it easier to run the benchmarks on various parallel architectures [20][21]. NPB 3 
further expanded the suite by incorporating additional benchmarks for unstructured adaptive meshes, 
parallel I/O, multizone applications, and computational grids, with the support of OpenMP, Java, and 
High-Performance Fortran [21]. This evolution ensured that the benchmarks remained relevant for 
assessing modern HPC systems. The benchmarks are available in different problem sizes, known as 
classes, to accommodate systems with varying capabilities. These classes range from Class A (smallest) 
to Class E (largest). The problem sizes and parameters for each class are summarized in Table 3. 

 

Table 2. Computational kernels of the NPB suite. 

Kernel Objective 

Integer Sort (IS) To assess integer computation and data communication ability 
Embarassingly Parallel (EP) To measure the capacity of floating point operations 
Conjugate Gradient (CG) To evaluate data communication mechanisms, memory locality, and caches 
Multi Grid (MG) To stress short  and long-distance data communication 
Fast Fourier Transform (FT) To simulate intensive long-distance communication 
Block Tri-diagonal (BT) To evaluate the performance of computational workloads 
Scalar Penta-diagonal (SP) To measure the efficiency of solving structured grid problems 
Lower-Upper Gauss Seidel (LU) To test the performance of solving sparse linear systems 

 
Table 3. Hardware specification of Mahameru High-Performance Computing System 

 
Kernel Parameter Class A Class B Class C Class D Class E 
IS #keys 223 225 227 231 235 
 key max. value 219 221 223 227 231 
EP #random-number pairs 228 230 232 236 240 
CG #rows 14000 75000 150000 1500000 9000000 
 #nonzeros 11 13 15 21 26 
 #iterations 15 75 75 100 100 
 eigenvalue shift 20 60 110 500 1500 
MG grid size 256x256x256 256x256x256 512x512x512 1024x1024x1024 2048x2048x2048 
 #iterations 4 20 20 50 50 
FT grid size 256x256x128 512x256x256 512x512x512 2048x1024x1024 4096x2048x2048 
 #iterations 6 20 20 25 25 
BT grid size 64x64x64 102x102x102 162x162x162 408x408x408 1020x1020x1020 
 #iterations 200 200 200 250 250 
 time step 0.0008 0.0003 0.0001 0.00002 0.000004 
SP grid size 64x64x64 102x102x102 162x162x162 408x408x408 1020x1020x1020 
 #iterations 400 400 400 500 500 
 time step 0.0015 0.001 0.00067 0.0003 0.0001 
LU grid size 64x64x64 102x102x102 162x162x162 408x408x408 1020x1020x1020 
 #iterations 250 250 250 300 300 
 time step 2.0 2.0 2.0 1.0 0.5 

 
2.3. High Performance Conjugate Gradients (HPCG) Benchmark 

HPCG benchmark is a benchmark suite software proposed by [18], specifically designed for 
ranking HPC systems. The HPCG benchmark evaluates HPC system performance in solving large, sparse 
linear systems through computations and data access patterns typical in scientific applications. This 
HPCG benchmark, with a memory-bound and data-intensive benchmark, complements the existing 
High-Performance Linpack (HPL) benchmark used by https://top500.org, a continuously updated 
ranked list of the most powerful computer systems in the world. The HPCG benchmark has been selected 
due to its broad representation of various real-world applications from bioinformatics to 
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environment/weather applications that employ linear solver algorithms. It measures the performance 
of sparse linear system equation solving, such as in 3D heat diffusion problems, additive Schwarz domain 
decomposition, multigrid preconditioning, and parallel Conjugate Gradient solver. Additionally, it serves 
as an easily accessible reference implementation for a conjugate gradient algorithm. HPCG implements 
a preconditioned CG approach, utilizing a local symmetric Gauss-Seidel preconditioner. During a typical 
execution, HPCG comprises the following phases: (i) problem setup; (ii) verification and validation 
testing; (iii) reference sparse matrix-vector (MV) and Gauss-Seidel timing; (iv) reference CG timing and 
residual reduction; and (v) optimization of CG setup and results reporting. 

 

2.4. Experiments Design 
This study consists of two benchmarking experiments, i.e., NPB experiments which utilize NPB 

suite 3.4.2 without the multizone version, and HPCG experiments which utilize HPCG 3.1. For the setup, 
both HPCG and NPB are compiled using Intel Compiler 2024.0 with the -O3 optimization option to get 
the best performance. We use Intel MPI 2021.11.0 to run both benchmark suites. Every node that runs 
the simulation is reserved exclusively, which means that other jobs are not allowed to run on the same 
node. Hence, the simulations are not affected by other programs and produce more accurate timing and 
measurement. This study is not conducted during an exclusive period, such as a maintenance period, so 
not all the 92 nodes are used for this benchmarking study due to being used by regular users. In NPB 
experiments, we conduct simulations using a combination of five parameters that have multiple values. 
All parameters and their possible values can be seen in Table 4. The most distinctive parameter in NPB 
is the programming model, which provides two different approaches, i.e., MPI programming and 
threaded programming. Hence, the NPB experiments consist of two sub-experiments. 

 

Table 4. Parameters in NPB experiments. 

Parameters  Values 
Programming model MPI, OpenMP 
Kernel or Module IS, EP, CG, MG, FT, BT, SP, LU 
Problem class A, B, C, D, E 
Number of nodes 1, 2, 4, 8, 16, 32 
Number of cores (MPI only) 1, 2, 4, 8, 16, 32, 64 
Number of threads (OpenMP only) 1, 2, 4, 8, 16, 32, 64, 128 

 
For the MPI approach, we run the simulation in a single-node and a multiple-node environment. 

The number of nodes used to run all modules is 1, 2, 4, and 8 nodes, except for the CG module, which 
also runs at 16 and 32 nodes. The number of cores in a single-node environment varies from 1 to 64 
cores, while the number of cores in multiple-node environments is 64 cores per node. In total, there are 
410 simulations with different parameter combinations. Each simulation is run five times. In contrast to 
the MPI approach, we run the OpenMP simulations only in a single node using a different number of 
threads. As mentioned in the architecture section, each node has two processors, and each processor has 
64 threads. Thus, the maximum number of threads that can be run is 128. In total, there are 240 different 
parameter combinations. Same as the MPI experiment, each simulation also runs five times.  

Unlike NPB experiments, HPCG experiments can only be run using MPI. The problem in HPCG is 
only specified by the values of the parameters NX, NY, and NZ. In this study, the values of NX, NY, and NZ 
are the same, i.e., 160. The simulations run from 1 node up to 64 nodes with 64 cores for each node, 
except for simulations using a single node. All possible values of each parameter are shown in Table 5. 
Therefore, there are only 12 simulations that run five times each, like NPB experiments. 

 

Table 5. Parameters in HPCG experiments. 

Parameters  Values 
Number of nodes 1, 2, 4, 8, 16, 32 
Number of cores (single node only) 1, 2, 4, 8, 16, 32, 64 
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2.5. Evaluation Metrics 
To evaluate the efficiency of a program on a specific computer, it is beneficial to understand the 

theoretical peak performance of the machine. By measuring the program's actual performance, we can 
determine the percentage of the theoretical peak the program is achieving. In the context of numerical 
programs used in scientific computing, peak performance is quantified in FLOP/s (floating-point 
operations per second), which refers to the count of floating-point operations (as opposed to integer 
operations) such as multiplication and addition performed each second. The theoretical peak flop/s of a 
computer is estimated as a product of (1) number of cores, (2) number of sockets, (3) clock speed, and 
(4) cycles per instruction (CPI). The theoretical peak of Mahameru is then computed as written in (1). 

𝑅𝑝𝑒𝑎𝑘 = (# 𝑐𝑜𝑟𝑒𝑠) ×  (# 𝑠𝑜𝑐𝑘𝑒𝑡𝑠) ×  (𝑐𝑙𝑜𝑐𝑘 𝑠𝑝𝑒𝑒𝑑) ×  𝐶𝑃𝐼 (1) 
 = 32 × 2 × 2.0 × 109 × 32 
 = 4.096 𝑇𝐹𝐿𝑂𝑃𝑆 (𝑝𝑒𝑟 𝑛𝑜𝑑𝑒) 
 = 376.8 𝑇𝐹𝐿𝑂𝑃𝑆 (𝑡𝑜𝑡𝑎𝑙 92 𝑛𝑜𝑑𝑒𝑠) 

Aside from 𝑅𝑝𝑒𝑎𝑘 , we also use speedup as a metric to estimate Mahameru’s performance in solving 

problems using multiple processors. Speedup is computed by dividing the time a problem is solved in 
parallel by the time a problem is solved using a single processor. The formula for calculating speedup is 
as follows: 

𝑆 =  
𝑇𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙

𝑇𝑠𝑖𝑛𝑔𝑙𝑒
 (2)  

In an ideal scenario, if we use p processors in parallel, we expect to get p times speedup or the 
computation time in solving a problem is reduced by a factor of p. However, 𝑅𝑝𝑒𝑎𝑘 , we will not get this 

ideal speedup (perfect linear speedup) when benchmarking an HPC system because of various overhead 
and latency. In this case, we could use the Fraction of peak metric or the Efficiency metrics to calculate 
the performance of an HPC system compared to its theoretical peak performance or speedup. The 
formula for calculating the Fraction of peak and Efficiency is as follows: 

𝐹𝑝𝑒𝑎𝑘 =
𝑅𝑎𝑐𝑡𝑢𝑎𝑙

𝑅𝑝𝑒𝑎𝑘
 ×  100% (3) 

𝐸𝑓𝑓 =  
𝑆

𝑀𝑃𝐼 𝑟𝑎𝑛𝑘
×  100% (4)  

In this study, we measure the speedup metric for both benchmarks and add the FLOP/s metric for HPCG 
benchmarks. Both will be compared with Mahameru's theoretical performance to calculate the fraction 
of peak and efficiency of the Mahameru HPC system. 
 
3. RESULT AND DISCUSSION 

3.1. NPB Result 
The average speedup per core/thread from the NPB benchmark is shown in Figure 2 (left), 

where the blue bars show the average speedup using MPI and the red bars show the average speedup 
using OpenMP. The result indicates that OpenMP consistently achieves higher average speedups per 
thread compared to MPI across all benchmarks. This outcome suggests that OpenMP, which is designed 
for shared memory parallelism, benefits from the low to no communication overhead and closer 
memory access in MAHAMERU BRIN HPC. On the other hand, MPI, which is optimized for distributed 
memory systems, demonstrates lower speedups, likely due to communication overhead between 
processes. Benchmarks such as EP, FT, and BT show significant differences in speedup between the two 
paradigms, emphasizing the efficiency of OpenMP for workloads with a high degree of shared data and 
reduced communication demands. The SP kernel cannot be executed in the MPI paradigm in 
MAHAMERU BRIN HPC due to synchronization overheads and strong data dependencies. 

Figure 2 (right) illustrates that all kernels and modules with class D in the NPB-OpenMP exhibit 
varying degrees of speedup. Generally, the memory capacity (including main memory and cache) is 
sufficient to support the increasing computational demands. As expected, no single kernel or module 
attained an ideal speedup or perfect linear speedup, which is the maximum theoretical value for a 
parallel algorithm [22]. Apart from the Conjugate Gradient (CG) kernel, all other kernels and modules 
demonstrated linear speedup, although the rate of the increase in speedup was still much lower than the 
increase in the number of processors. Among the five computational kernels, the EP kernel achieved the 
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highest speedup. This result is expected, as EP represents a set of independent tasks that do not require 
communication between them [23], as shown in Figure 3b for the MPI version. Among the pseudo-
application modules, the LU module also demonstrates minimal communication, resulting in the highest 
speedup, which is slightly greater than that of EP. In contrast, the Multigrid (MG) kernel achieved the 
least speedup and performed similarly to IS. 

 

  
Figure 2. The average speed up per core/thread of NPB benchmark using MPI and OpenMP (left). The speed up of each 

kernel and module in the NPB-OpenMP benchmark with class D (right). 

 
The execution time composition for each process in the kernels and modules of NPB-MPI is 

illustrated in Figure 3, showing that in most NPB algorithms, the ratio of computation to communication 
time decreases as the number of processors increases. For example, in the IS and CG kernels, 
communication time significantly increases to more than 50% of the total time when using many 
processors (128 for IS and 512 for CG), see Figure 3a-3c. According to [24], these two kernels are 
characterized by intensive memory communications and complex data dependencies, which are crucial 
for evaluating parallel programming frameworks. The CG benchmark involves communication patterns 
that are prevalent in the numerical solution of partial differential equations. This makes it a 
representative workload for modern applications that rely heavily on memory and network 
performance [25]. In contrast, the ratio of communication time in the EP kernel, as shown in Figure 3b 
appears very minimal compared to other kernels. This is because each task in an EP benchmark can be 
executed independently, without requiring data from other tasks. This independence reduces the need 
for communication, making the EP algorithm ideal for parallel execution. As noted in [26], the EP 
benchmark serves as a prime example of tasks designed to be executed with minimal communication, 
highlighting the efficiency of such benchmarks in parallel computing environments. 

The MG and FT benchmarks require a power-of-two number of processors. In the MG 
benchmark, the communication time clearly increases with a larger number of processors, as illustrated 
in Figure 3d. In contrast, the FT benchmark achieves the highest communication efficiency when using 
the maximum number of processors in a single socket (32 processors), see Figure 3e. Communication 
falls off with inter-sockets or internodes configurations of processors as the network becomes saturated. 

In the pseudo-application modules, the use of a number of processors is prescribed. The BT 
(Block Tridiagonal solver) and SP (Scalar Pentadiagonal solver) benchmark requires a square number 
of processors (e.g., 1, 4, 16) to solve three sets of uncoupled systems of equations in three directions (X, 
Y, and Z). The BT benchmark solves a block tridiagonal system with 5x5 blocks, and the SP benchmark 
solves a scalar pentadiagonal system. These two kernels are appropriate to benchmark high-bandwidth 
networks because of their heavy reliance on load balance and communication granularity. Our 
benchmark shows that the communication time ratio from the overall computation time (xcomm, 
ycomm, and zcomm) increases significantly when using more than 1 processor for the BT benchmark 
(Figure 3f) while the SP benchmark (Figure 3g) also increases, but not as significantly as the BT 
benchmark. The use of 64 or 256 processors in the BT or SP kernel demonstrates a slightly higher 
percentage of computation/processing time compared to using 16 processors. It is important to note 
that this percentage reflects computation time as a portion of the total time consumed, but it does not 
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imply that the actual computation time is longer. As presented in Figure 2 (left), the speed-up for SP and 
BT is quite significant. 

The LU (Lower-Upper Gauss-Seidel solver) benchmark requires processors to count power-of-
two numbers (e.g., 1, 2, 4, 8) to solve linear equations using the Symmetric Successive Over-Relaxation 
(SSOR) procedure. This benchmark is chosen for its sensitivity to the small message communication 
performance of an MPI implementation. Our benchmark shows that the communication time ratio from 
overall computation time (lcomm and ucomm) and the message communication exchange ratio from 
overall computation time (exch) increase according to the number of processors used. The result is as 
expected from this benchmark because the increase in the number of processors means that the 
messages sent to communicate also increase. 

 

(a) IS (b) EP (c) CG 

(d) MG  (e) FT  (f) BT  

(g) SP  (h) LU  

 

Figure 3. Time percentage of each process in each kernel and module in the NPB-MPI benchmark with class D. 

 
3.2. HPCG Benchmark Result 

Table 6 presents the HPCG benchmark results based on experiments using 1 - 32 nodes as 
shown in Table 4. The HPCG benchmark on the MAHAMERU HPC achieves a performance of TFlop/s 
reaching up to 1.13882 (when utilizing 32 nodes), which corresponds to a fraction of peak of 0.87%. 
When compared to other supercomputer clusters, Mahameru appears to be in competition with Ares 
from Cyfronet, Poland, which has a peak fraction of 0.9%.  

Table 6. Results of HPCG benchmark. 

Node MPI Rank #Eqs (+E3) Mem(GB) GFLOP/s Speed up Efficiency 
1 1 4,096 2.93 1.54503 1 100.00 
1 2  8,192 5.86 3.09279 1.9998 99.9 
1 4 16,384 11.71 5.9186 3.8283 95.71 
1 8 32,768 23.43 9.411 6.1039 76.30 
1 16 65,536 46.86 16.814 10.9140 68.21 
1 32 131,072 93.73 27.1893 17.6795 55.25 
1 64 262,144 187.46 33.4688 21.8248 34.10 
2 128 524,288 374.91 69.7274 45.4415 35.50 
4 256 1,048,576 749.83 129.11 84.2006 32.89 
8 512 2,097,152 1,499.66 286.109 186.4271 36.41 
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Node MPI Rank #Eqs (+E3) Mem(GB) GFLOP/s Speed up Efficiency 
16 1024 4,194,304 2,999.31 569.669 371.1479 36.24 
32 2048 8,388,608 5,998.62 1138.82 741.4653 36.20 

 
A more detailed comparison with some other Top 500 supercomputers can be found in Table 7. 

Table 6 also indicates that as the number of processors (MPI ranks) increases, the speedup also rises. 
Consequently, the efficiency of HPCG gradually decreases due to communication within the processors. 
In the case of a single socket (with MPI ranks up to 32), the efficiency drops to 55%. Meanwhile, the 
intersocket utilization within a single node can decrease by up to 34%, which is somewhat comparable 
to the utilization of multiple nodes that achieve an efficiency of 36%. This indicates that the intersocket 
communication is not significantly different from the internodes communication. Due to Mahameru’s 
status as a shared national resource, experiments were limited to 32 nodes to avoid disrupting active 
users. However, based on the trend observed from 1 to 32 nodes, Figure 4 demonstrates the estimation 
of the peak performance utilizing the full capacity of Mahameru (92 nodes) which would likely yield a 
peak performance of approximately 2.5% of the system's theoretical peak. While this is only a projection, 
it provides a conservative estimate of Mahameru’s capability at scale. Future work will aim to validate 
this estimation during system maintenance windows or exclusive benchmarking periods. 

 

Table 7. Performance of some Top 500 supercomputer clusters. 

      

No Top 500 Rank Computer/Site Cores HPCG (PFLOP/s) Fraction of Peak 

1 4 Supercomputer Fugaku, RIKEN Center for 
Computational Science, Japan 

7,630,848 16.000 3.0% 

2 1 Frontier, DOE/SC/Oak Ridge National 
Laboratory, USA 

8,699,904 14.050 0.8% 

3 2 Aurora, DOSE/SC/Argonne National 
Laboratory, USA 

9,264,128 5.613 0.3% 

4 354 SNL/NNSA CTS-1 Attaway, Sandia 
National Laboratories, USA 

52,920 0.039 1.0% 

5 471 CEA-HFi, Commissariat a l'Energie 
Atomique (CEA), France 

73,728 0.033 1.1% 

6 442 Ares, Cyfronet, Poland 37,824 0.031 0.9% 

 

 
Figure 4. Ratio of peak performance of HPCG with the theoretical peak of Mahameru versus number of nodes. 

 
3.3. Discussion  

Deploying the Mahameru HPC system directly into production without conducting benchmarks 
presents a significant issue. Consequently, inconsistent performance has emerged across various 
workloads. Certain applications are underperforming compared to the previous generation, and 
resource allocation seems inefficient. Without benchmarking, system administrators are unable to 
determine whether the issues related to hardware configuration, interconnect performance, or software 
inefficiencies. This study contributes to providing benchmarking results for the HPC system based on 
the NPB and HPCG benchmarks. The NPB evaluates key performance metrics of the processor, memory, 

http://u.lipi.go.id/1466480524
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and communication subsystems for various classes of computational workloads, while HPCG simulates 
performance of real-world scientific applications, especially memory-bound and communication-heavy 
codes. 

The results from the NPB and HPCG benchmarks provide valuable insights into the performance 
characteristics and scalability of the Mahameru HPC system. The NPB benchmark results demonstrate 
the different behaviors of two parallelism paradigms, MPI and OpenMP parallelization approaches. The 
lower speedup of MPI compared to OpenMP can primarily be attributed to the communication overhead 
associated with message passing, particularly for the tested problem sizes and node counts. This 
highlights a well-known trade-off in HPC: while OpenMP can efficiently exploit shared-memory 
parallelism within a single node, MPI is essential for scaling across multiple nodes, where 
communication latency becomes a limiting factor. Despite these drawbacks, MPI remains critical for 
large-scale distributed applications, where the ability to coordinate work across many nodes outweighs 
the overhead costs. So, for the Mahameru cluster configuration, OpenMP emerges as the more efficient 
parallel programming model for maximizing core and thread utilization, especially for benchmarks with 
communication-intensive workloads. This also indicates the lack of visibility into communication 
bottlenecks across nodes. 

The HPCG benchmark results further support this understanding. Although empirical testing 
was limited to 32 nodes due to resources sharing, the observed performance trend suggests consistent 
scaling characteristics. However, direct experimentation at the full 92-node capacity would provide 
stronger validation and remain an important next step for system evaluation. The initial result shows 
that the Mahameru system's performance is competitive with the lower tier of the Top 500 
supercomputers. This outcome emphasizes the importance of memory bandwidth and latency as 
bottlenecks rather than raw computing capability alone. An interesting finding from both benchmarks 
is that hyperthreading offers limited benefits for algorithms based on conjugate gradient. These 
algorithms rely heavily on the presence of physical cores to maintain sustained performance. This 
indicates that future system configurations and scheduling policies on Mahameru should prioritize the 
utilization of physical cores over hyperthreading for similar workloads to maximize efficiency. This is 
particularly relevant for applications such as computational fluid dynamics and other scientific 
simulations that depend on conjugate gradient methods. 

 
4. CONCLUSION 

This study was motivated by a critical gap in the deployment of the Mahameru HPC system: the 
absence of formal benchmarking.  This could limit both the effective use of Mahameru’s resources and 
the confidence of its research community in the system’s capabilities. To address this, we conducted a 
detailed performance evaluation of various parallel algorithms using the NAS Parallel Benchmarks 
(NPB) and the HPCG benchmark suite. The NPB results revealed that OpenMP consistently 
outperformed MPI in terms of speedup for most benchmarks, largely due to lower communication 
overhead and more efficient thread-level execution. However, MPI remains essential for large-scale 
distributed computing, and our results suggest that hybrid parallel programming models (MPI + 
OpenMP) are best suited to Mahameru’s architecture for balancing efficiency and scalability, such as in 
handling large-scale and communication-intensive tasks. Using the HPCG benchmark, we observed that 
Mahameru achieves approximately 2.5% of its theoretical peak performance with 32 nodes, placing it 
within the lower tier of systems on the Top500 list. This demonstrates that, while the system is not yet 
fully optimized, it has the potential to support complex, real-world scientific applications such as CFD 
simulations that rely on conjugate gradient methods. Additionally, the study found that hyperthreading 
offers minimal benefit for conjugate gradient-based workloads, reinforcing the importance of 
prioritizing physical cores in job scheduling and system tuning. 

In summary, this work fills the initial benchmarking gap by delivering a clear performance 
baseline, identifying architectural strengths and weaknesses, and offering practical configuration 
strategies. While these findings provide strong guidance for CPU and communication-bound workloads, 
future research should incorporate I/O performance analysis, potentially using the HPC Challenge 
benchmark suite. This addition would provide a comprehensive system performance profile, enhancing 
our understanding of the file system performance, I/O throughput, and latency. In practical applications, 
benchmarking at application level, such as with OpenFOAM (CFD) and WRF (weather modeling), can 
guide users in selecting optimal parallelization strategies for their specific workloads. 
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