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The development of quantum computing triggers new challenges in data
security, particularly in addressing attacks that can solve complex
mathematical problems on the fly. Several hash-based data security
methods have been proposed to deal with this threat, one of them being
Hash to Obtain Random Subset-Tree (HORST). However, HORST has
drawbacks, such as low security, because it only uses one hash round.
The security of HORST is already improved by Hash to Obtain Random
Subset and Integer Composition (HORSIC). However, HORSIC's
execution time is significantly increased. The problem of this research is
the low-security HORST and the high execution time of HORSIC. This
research proposes a new method, Modified Hash to Obtain Random
Subset-Tree (MHORST), which aims to improve the security of HORST
and reduce the execution time to less than HORSI’'s. MHORST uses
Merkle tree, SHA-256 hashes, and Mersenne Twister to build publickeys
and digital signatures. Based on the experiment results, MHORST
reduces the signing time by more than 3.3 times compared to HORST.
MHORST reduces the verification time by more than 1.1 times HORST
and 17 times HORSIC. Although the security level of MHORST decreases

slightly compared to HORSIC, this method is still more secure than
HORST against signature forgery.
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1. INTRODUCTION

Several hash methods that are resistant to quantum attacks are Hash to Obtain Random Subset
(HORS) [1][3] and Hash to Obtain Random Subset-Tree (HORST) [3][5]. Hash to Obtain Random Subset-
Tree is a development of the HORS method[15], which combines the Merkel Tree [8][9] in creating
public keys and signatures. Since the signature is distributed, an attacker can guess the pattern of the
signature using the public key[6][10].

Hash to Obtain Random Subset and Integer Composition combines the HORS and Integer
Composition methods [13], where the signature creation process uses the Integer Composition
Algorithm. The Integer Composition Algorithm is the process of combining several positive integers to
form a specific integer[11]. However, the time required for creating compositions from the Integer
Composition algorithm is quite large, which is a weakness of this method [12]. Therefore, a method is
needed to improve the level of security and the relatively lower time execution of the two
methods[4][16].

HORSIC is a method that combines HORS and integer composition[7]. However, adding the
integer composition method increases the processing time of the signature creation. Additionally,
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HORSIC key generation uses repeated hashing, which increases the execution time required [3].
Therefore, it remains a challenge to design a digital signature method that addresses the shortcomings
of HORST in terms of the security level and HORSIC in terms of time execution[17].

The proposed method aims to increase security for HORST, and decrease time execution for
HORSIC. In the proposed method, the key generation uses a Merkel tree, where each leaf that has been
concatenated will be hashed to the top of the Merkle tree. The hash uses SHA-256, which is considered
safe and resistant to many cryptographic attacks[2][14]. Public keys are taken from some leaf of each
level of the Merkel tree. In the message section, the message will be hashed and converted into an index
value without going through the Integer composition process.

This research assumes the seed is a random value from 0 - 255, generated with a Pseudo
Random Number Generator (PRNG). The hash process uses the SHA-256 or 256-bit Secure Hash
Algorithm[14]. The sender and Receiver have the same PRNG. The results show that the key generation
time for HORST is more than 9 times faster than that of HORSIC and about 1.2 times faster than that of
MHORST. Regarding the signing, HORST reduces the time by more than 2.1 times compared to HORSIC,
while MHORST reduces the signing time by more than 3.3 times compared to HORST. HORST shows a
time reduction of more than 17 times for verification compared to HORSIC, while MHORST reduces the
verification time by more than 1.1 times. Although the security level of MHORST decreases slightly
compared to HORSIC, this method is still superior to HORST in reducing the probability of signature
forgery.

2. METHOD

The main idea of this research is to overcome HORST's weakness related to its low security[4].
This research proposes modifications by adding a hashing method to the Merkle tree for public key and
signature generation. In addition, public key randomization is performed using a seed obtained using
Mersenne Twister PRNG to increase the security of the transmitted public key. The randomized key is
referred to as the Published Public Key.

Figure 1. Overview of the MHORST
Creating a digital signature using MHORST goes through five stages: seed generation, private
key generation, signing process, public key generation, and signature verification (see Figure 1). The
seed generation process uses PRNG for public key randomization. This process will produce a seed in
the form of random numbers that will be used for private key generation. The next stage is the signing
process, which involves creating a digital signature involving private and public keys. The last stage is
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the signature verification process, which is the process of validating the signature using the public key
and message. By using the methods described, an increase in the security of the MHORST method will
be obtained.

2.1 Seed Generation

The seed generation process uses a Pseudorandom Number Generator (PRNG) based on the
Mersenne Twister algorithm. A PRNG is a program or tool designed to generate a sequence of numbers
or symbols in a non-deterministic manner, producing what appears to be a random series of values. The
Mersenne Twister algorithm has been selected for this purpose due to its efficiency and reliability in
generating pseudo-random numbers[20]. The seed generated in this process results from a random
number generator of 256 numbers with values between 0 and 255. The algorithm of the random
generation process can be seen in Algorithm 1.

Algorithm 1: PRNG Mersenne Twister

1 Input: z (number of seed), m (max range), f(initial number for values), w (word
size exp.64 bit), a (multiplication constant for transformation), s, t (shift
values), b, ¢ (bitmask values for xor transformation), 1 (final transformation
shift), r is the binary number of r 1's

2 Output: ty (seed)

3 index = 1

4 11 = (1 << r) -1

5 u = lowest w bits of (NOT 11)
6 MT[] = (0,1,2,3,4,..,255)

7 i=1

8 while 1 < z

9 MT[i] = lowest w bits of (f * (MT[i-1] XOR (MT[i-1] >> (w-2))) + 1)
10 i=1+1

11 end while

12 Function extract number ()

13 for i from 1 to z-1

14 if index >= z then

15 if index > z then

16 |error "Generator was never seeded"
17 end if

18 twist ()

19 end if

20 y = MT[index]

21 y = y XOR (y >> u)

22 y = y XOR ((y << s) AND D)
23 y = y XOR ((y << t) AND c)
24 y =y XOR (y >> 1)

25 t; = lowest w bits of (y)
26 index = index + 1

27 end for
28 Function twist ()

29 i =20

30 while 1 < z

31 x = (MT[i] AND upper mask) OR (MT[(i+1l) mod z] AND lower mask)
32 XA = x >> 1

33 if (x MOD 2) != 0 then

34 [xA = xA XOR a

35  lend if

36 MT[i] = MT[(i + w) mod k] XOR xA

37 i=1+1

38 end while

39 Tk - (t1/t2lt31---ltz)
40 return tg
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Note: z (number of seed), m (max range), f (initial number for values), w (word size exp. 64 bit), u
(bitmask upper bits), Il (bitmask lower bits), a (multiplication constant for transformation), s, t (shift
values), b, c (bitmask values for xor transformation),l (final transformation shift)

2.2 Private Key Generation
This section discusses hashing messages using SHA-256, the indexing process, where the
message is cut as an index value and generates a private key.

2.2.1  Hashing Message

SHA-256 will be used in the HORST modification process to generate private keys, public keys,
and signatures. In the HORST modification process, the message will be hashed using SHA-256 to
produce a hash value, which will then be indexed. Here is an example of a message that has been hashed
using SHA-256:f54c3cb3e19e0604e5210c136756462e59cd4ec4d8b442575c5a139d15ec 42a2

2.2.2  Indexing Process

The indexing process divides the message into parts of 8 bits and assigns an index for each part
of the message. In this case, the parts are hy, h,,..,, hy. The seed is selected based on the index. In this case,
the data that the index will show is the selected seed, which is then hashed to generate the private key.
Seed is a random value generated by PRNG using Mersenne Twister. Suppose the indexed parts of the
message are as follows:
[245,76,60,179,225,158,6,4,229,33,12,19,103,86,70,46,89,205,78,196,216,180,66,87,92,90,19,157,21,
236,66,162]

2.2.3  Generating Private Key

In the private key generation process, the data used is the seed selected in the indexing process
that will be used in the creation of the Merkle tree. Next, the seed is processed using SHA-256 for one
hash round. The private key resulting from the indexing process is as follows. The algorithm of the key
generation process can be seen in Algorithm 2.

Algorithm 2: Private Key Generation

1 Input: m (Message),tx (Seed) = (k, t;, t,, ..., tx), and k (Key length)
2 Output: privy (Private Key)

3 h = Hash(m)

4 Split h into k substrings hy, h;,..., hy, of length log, t bits each
5 For 7 = 1 to k:

6 | convert each hy to an integer i,

7 End For

8 For j = 1 to k:

10 |privj=Hash (ti;)

11 End For

12 priv=( priv,priv,..priv,)

13 Return priv
Note: m is the message, tx is the seed, k is the key length, and privk is the private key

Suppose the seed is as follows: [44,214,171,180,19,29,101,49,152,112,77,210,209,105
,48,145,29,237,90,156,193,167,93,142,236,220,210,13,207,228,93,6]. The result of seed hash process:
[71ee45a3c0db9a9865f7313dd3372cf60dca6479d46261f3542eb9346e4a04d6,802b906a18591ead8
a6dd809b262ace4c65c16e89764c40ae326cfcff811e10c,284de502c9847342318c17d474733ef468fbd
be252cddf6e4b4be0676706d9d0,7b69759630f869f2723875f873935fed29d2d12b10ef763c1c33b8el
004cb405,.......cccourueee. ,9d693eeee1d1899cbc50b6d45df953d3835acf28ee869879b45565fccc814765,6
e4001871c0cf27c7634ef1dc478408f642410fd3a444e2a88e301f5c4a35a4d,e7f6c011776e8db7cd330
b54174fd76f7d0216b612387a5ffcfb81e6f0919683]

2.3 Signing Process in MHORST

The signing process begins by generating a Merkle Tree using the private key. Suppose the first
node of the Merkle Tree is 71ee45a3c0db9a9865f7313dd3372cf60dca6479d46261f3542eb9346e4a0
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4d6. Furthermore, the second node of the Merkle Tree is 802b906a18591ead8a6dd809b
262ace4c65c16e89764c40ae326cfcff811e10c. Then, the first node and the second node should be
concatenated. The concatenated node should be processed using SHA-256 and placed as the first branch
of the first-level Merkle tree. The third node of the Merkle Tree is 284de502c9847342318c17d474733ef
468fbdbe252cddf6e4b4be0676706d9d0, the fourth node of the Merkle Tree is
7b69759630f869f2723875f873935fed29d2d12b10ef763c1c33b8e0004cb405. Then, the third node
and the fourth node should be concatenated. The concatenated node should be processed using SHA-
256 and placed as the second branch of the first-level Merkle tree. This mechanism will be used until the
last private key node pair is reached. The algorithm of the signature generation process is shown in
Algorithm 3.

Algorithm 3: Signing-MHORST
1 Input: privy (Private Key)

2 Output: s (Signature) and tpb, (Temporary Public Key)
3 1 =length (priv)

4 tpbg = priv,

5 tpb; = priv;
7

8

9

temp, = priv
while 1 > 2

i =20
10 x =0
11 while 1 < 1
12 sk,= Hash (concatenate (temp;+temp;,;))
13 temp, = sk,
14 x = x+1
15 i = i+2
16 tpby = (tempy)
17 End While
18 1 =x
19 end while
20 i=0

21 s = Hash (concatenate (temp;+temp;,;))
22 tpb= (tpby tpb, ...tpby)
23 return s,tpb
Note: s is signature, tpb is temporary public key, priv is private key

2.4 Public Key Generation

The public key is a randomly selected leaf on the Merkle tree created in the previous process.
Selecting multiple public keys aims to reduce processing time. The verification process can be shortened
by taking representative public keys in the Merkle tree (see Algorithm 4). In this case, to determine the
number of leaves selected as public keys, it is necessary to know the number of levels of the Merkle tree
level, which is equal to log, d, where d is the number of nodes.

Algorithm 4: Choosing the Public Key

1 Input: tpb (tpb:, tpb,,..) (temporary public key),ck(ck[1],ck[2].., ck[length(ck)] (seed)
2 Output: pub (public key)

4 g =length (ck)

5 For 1 = 0 to g:

6 | pb; =tpbckii)

7 End For

8 pub= (pb, pb, ...pbq)

9 Return pub

Note: tpb is temporary public key, ck is chosen key, pub is public key

Suppose d = 32 which means the number of Merkle tree levels is 5. In the leaf selection, at least the leaves
that will be used to form paths to higher levels and have connections to build roots are selected so there
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is no interference in key construction and verification. Thus, the number of public keys that must be
stored and processed is optimized, making the process more efficient than taking all the leaves in the
Merkle tree.

2.5 Published Public Key Generation

The purpose of publishing the published public key is to randomize the order of the public key
so that an attacker cannot easily guess it. This method is necessary because creating a signature from a
public key requires combining the data and hashing each public key sequentially, which allows an
attacker to obtain the public key[18][19]. Since the signature can be constructed if the public key has
been obtained, the attacker can easily calculate the signature from the public key. To overcome this
problem, MHORST randomizes the public key (see Table 1) is necessary so the attacker cannot build a
signature. The published public key is generated by randomizing the public key based on seeds
generated by Mersenne Twister (see Algorithm 1). The result is shown in Table 2.

Table 1 Seed-based public key resulted by MHORST

Seed Public Key
69 71ee45a3c0db9a9865f7313dd3372cf60dca6479d46261f3542eb9346e4a04d6
120 802b906a18591eadBab6ddB809b262ace4c65¢c16e89764c40ae326cfcff811e10c
188 5aa7dc47cd2b4322eal163252f7ac0e0799e276a0e6cc649782487876ca407f91
11 725a5987ce617e8a24d0f89c4ce8176d92ec56c0cde164896413f9cbccB8e3b80
49 ed536c62f2c313a1f4906599ae2b17db8d94ffbca7fc2cc2dd54f5fd1a3f39e8
115 2f309c¢8228f9e2797659de4569374e30fae23c6a3656¢25¢11698363b07d22b9
2.6 Verification Process

The verification process will involve three processes: generating seeds, obtaining public keys
from published public keys, and verifying signatures.

2.6.1  Seed Generation

In this process, the receiver conducted seed generation using PRNG (Mersenne twister) so that
it can be assumed that the seed result of 256 numbers obtained by the receiver is the same as the seed
result created by the sender. For example [69,120,188,11,49,115,101,117,71,28,190,239,77,197,140,
117,78,31,174,210,241,207,231,24,...,170,62,169]

2.6.2  Obtaining Public Key from Published Public Key

This process aims to return the published public key to its original public key. It is conducted
by sorting the seeds obtained in step 2.2.3. from smallest to largest. The published public key will be
arranged based on the sorted seeds. Next, the seeds will be returned to their original sorted position.
Then, the published public key with the corresponding seed will be returned to the public key order
based on the original seed position. For example, in Table 2, the seed is 11, while the randomized
published public key is shown in the column published public key.

Table 2 Randomized published public keys as a result of randomization using Mersenne Twister

Seed Published Public Key

11 725a5987ce617e8a24d0f89c4ce8176d92ec56c0cde164896413f9cbcc8e3b80
49 ed536¢c62f2¢313a1f4906599ae2b17db8d94ffbca7fc2cc2dd54f5fd1a3f39e8
69 71ee45a3c0db9a9865f7313dd3372cf60dca6479d46261f3542eb9346e4a04d6
115 2f309¢8228f9¢2797659de4569374e30fae23c6a3656¢25¢11698363b07d22b9
120 802b906a18591eadB8a6dd809b262ace4c65c16e89764c40ae326¢fcff811e10c
188 5aa7dc47cd2b4322eal63252f7ac0e0799e276a0e6cc649782487876ca407f91

2.6.3  Signature Verification

The verification process uses the public key data sorted in the published public key verification
process. The first data, namely 71lee45a3c0db9a9865f7313dd3372cf60dca6479d46261f354
2eb9346e4a04d6, and the second data, namely 802b906a18591ead8a6dd809b2
62ace4c65c16e89764c40ae326¢cfc40ae326cf811e10c, the results of the public key arrangement are
then combined and processed using SHA-256. Next, the data is combined with the third-order public key
data, namely 5aa7dc47cd2b4322eal63252f7ac0e0799e276a0e6cc649782487876ca407f91, and
processed using SHA-256 until all the last public keys are processed. This process will continue until a
combined data of all public keys processed using SHA-256 is obtained. The results of this data will then
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be matched with the signature data. If it is the same, the signature is considered valid, and if it is not, the
signature is considered invalid.

3. RESULT AND DISCUSSION

This section describes the experimental results for each module and the analysis. The
experiment has two purposes. First, it evaluates the time execution of the three methods, namely HORST,
HORSIC, and MHORST, by calculating the time required at the key generation, signing, and verification
stages. Furthermore, the analysis was conducted to assess the security level of the three methods.

3.1 Experiment Result
This subsection discusses the experimental results and analysis of the HORST, HORSIC, and
MHORST methods.

3.1.1 Key Generation

Based on the results of 30 experiments with different private keys, the HORST method's key
generation time ranges from 0.00662 ms to 0.02397 ms. Meanwhile, the HORSIC method requires a
longer time, between 0.09764 ms and 0.20331 ms. Using the MHORST method, the time required ranges
from 0.00850 ms to 0.03863 ms. HORSIC takes the highest key generation time among these three
methods, while HORST takes the fastest. Based on the results shown in Figure 2, there is a significant
difference in public key generation time between the HORSIC method with HORST and MHORST. In
contrast, the difference between HORST and MHORST is not significant. This condition occurs because
the HORSIC method performs 256 SHA-256 processes for 256 public key data, while the HORST and
MHORST methods only require one SHA-256 process for the same amount of data. Thus, the HORST and
MHORST methods are more optimal for public key generation compared to HORSIC.

Figure 2. Execution time of the key generation process

3.1.2  Signing

The results of signature generation time for the three methods, namely HORST, HORSIC, and
MHORST, show significant differences. MHORST is the fastest method, with less signing times ranging
from 0.0008 to 0.00576 milliseconds. Although slower than MHORST, HORST performs well compared
with HORSIC, with signing times between 0.00509 to 0.01915 milliseconds. In other words, HORSIC has
the longest signing time, ranging from 0.01845 to 0.04059 milliseconds, indicating that it is less efficient
than the other two methods. The research results show a significant difference in signature generation
time between the HORSIC, HORST, and MHORST methods. HORSIC shows a much longer signature
generation time compared to HORST and MHORST. This difference is caused by the indexing process in
HORSIC, which must generate a unique index value for each entry, thus increasing the overall processing
time. In HORST and MHORST, no unique index is required, so the time required for indexing is relatively
lower than when using the HORSIC method.

In addition to the time difference caused by indexing, the signature generation process in
HORSIC requires 256 minus n SHA-256 runs, where n is the resultant integer composition value of the
message. In contrast, the HORST and MHORST methods require only one SHA-256 run for signature
generation. Thus, additional time is required for signature generation in addition to the time for index
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generation. Based on the explanation above, the time needed to create a signature using the HORSIC
method will be much greater than the time needed to create a signature using HORST and MHORST.

{ll I \‘. Il [ |

Figure 3 Execution time of signing process

3.1.3  Verification

The results of the three methods, HORST, HORSIC, and MHORST, based on the time taken for
signature verification (in milliseconds), show significant performance differences. The HORST method
shows efficient verification performance with times ranging from 0.000074 to 0.000211 milliseconds.
In contrast, HORSIC shows much slower verification times, ranging from 0.00131 to 0.017383
milliseconds, making it less efficient than HORST and MHORST. MHORST also shows short verification
times, similar to HORST, ranging from 0.000067 to 0.000097 milliseconds. In fact, in some cases,
MHORST shows a shorter verification time compared to HORST, thus making it a highly efficient
algorithm for digital signature verification.

Figure 4 Execution time of the verification process

Based on the signature verification time results, the MHORST method proved to be the most
superior, with the shortest key generation and signing time. This condition is due to the reduction in the
number of SHA-256 rounds and optimization in public key randomization. In contrast, HORSIC takes the
most time due to the repetitive SHA-256 process. Although faster than HORSIC, the HORST method still
requires more verification time due to the large public key length. Due to the public key length (about
8192 bytes), HORST needs more time for the verification process.

3.2.2  Security Analysis

This section discusses the security analysis of successful guessing attacks on private keys and
signatures in HORST, HORSIC, and MHORST.

3.2.2.1 Security Analysis of Successful Brute Force Attack on Private Keys

One attack method on private keys is brute force, in which the attacker tries every possible
secret key until they find the right one. This section discusses the security analysis of private keys in
HORST, HORSIC, and MHORST methods against brute force attacks.
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a. Security Analysis of Private Key Against Brute Force Attack in HORSIC

Based on the analysis result, security level usually refers to how difficult it is for an attacker to
crack a system successfully. In this case, if a guessing/brute force attack is used, then the formula for the
probability of success in HORSIC is shown in Equation (1).

The probability of success private key guessing in HORSIC = []}2, (;) (1)

2(m-i)+1

where m is the number of unique values, and i is the iteration. Since the value of 20m=D+1 jndicates that
the chance of getting identical keys is minimal, this guarantees the security level in HORSIC. Suppose m

= 6, then the probability of success private key guessing in HORSIC based on equation (1) is as follows:

the probability of success private key guessing in HORSIC = % X % X % X % X % X % = %

b. Security Analysis of Private Key in HORST and MHORST

Based on the analysis result, the security level of the HORST and MHORST methods in terms of
private key guessing differs from that of HORSIC because each index does not need to be unique. Thus,
the probability of success in private key guessing in HORST and MHORST can be calculated using
Equation (2).

1 l(m-i)+1
The probability of success private key guessing in HORST and MHORST = H:ﬁl (—) (2)
(M= (m-py+1)+1
where m is the total number of unique values. i is the iteration, 7(,,_;);1 is the sequence of unique values,
l¢m—i)+1 is the number of unique values for each m. This equation illustrates that the security level of a
private key depends on the number of unique elements in each iteration. The more unique values, the
smaller the probability of private key guessing. This condition means that the security level of the private
key in the HORST and MHORST methods increases as the value of m increases.
For example, six data indexes exist (4, 3, 5, 3, 3, 4). The same value is found in the data and it becomes
(3, 3, 3, 4, 4, 5) when sorted. By referring to Equation (2), the equations for HORST and MHORST are
obtained: The probability of success private key guessing in HORST and MHORST = % X % X % X % X % X %
=3)3d2i=Ixixi=1
3 221 9 4 1 36

3.2.2.2 Security Analysis Against Signature Brute Force Attack

Signatures are important in maintaining message integrity and authentication in cryptographic
systems. The security of a signature depends on its complexity and the hashing algorithm used. This
section will discuss the security level of HORST, MHORST, and HORSIC methods in the context of
signature guessing.

a. Signature guessing analysis for HORST

Based on the analysis results, the security level of the HORST method in terms of signature
guessing is equal to 1. This condition means that the signature can be guessed with a high probability
because the signature is part of the public key taken from the Merkle tree leaves and combined without
going through additional steps to increase security. Thus, it makes the security of the HORST method
vulnerable in this aspect, significantly if the number of signatures distributed is increasing, which makes
it easier for an attacker to guess the signature through public key analysis.

b. Signature guessing analysis for MHORST
In MHORST, the public key is obtained by selecting nodes or leaves of the Merkle tree. Based on
equation 1, with d = 256 nodes, resulting in 8 levels. The number of public keys (n) used ranges between
max-n and min-n, where n=max-n is used when all nodes at the lowest level are used to generate the
public key, while n=min n is used if one node is used in one level is used to generate the public key. Ifall
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nodes are used, n = 256, it means that 256 nodes will be processed, which causes a higher processing
time than the processing time for an n=min-n value. The selection of min-n needs to be adjusted to the
number of levels to ensure that the path from the leaf to the root is not manipulated. This process
ensures the integrity of the initial leaf to the root. In this case, the probability of guessing the public key
in MHORST depends on the number of public keys, as shown in Equation 3:

Probability of Public Key guessing =1/(n+1)! 3)

Using public key randomization makes it difficult for an attacker to guess it because the permutation of
n means the probability of public key guessing becomes very small. Since the probability for signature
guessing depends on the probability of public key guessing, the MHORST signature guessing probability
can be calculated using Equation (4).

MHORST Signature Guessing Probability =1/(n + 1)! 4)

The parameter n represents the total number of public key, which means the number of key
permutations is n factorial. Thus, the probability of guessing the public key from the published public
key is equal to 1/(n+1)! or it means that the probability of forging a signature is 1/(n+1)!, which is less
than the probability of creating a signature using HORST. Suppose n (the total number of the public key)
is 8, then based on equation (4), the MHORST Signature Guessing Probability equals 1/9!

c. Signature guessing analysis for HORSIC
Equation (5) shows the security level of the HORSIC method in terms of signature key guessing
based on the analysis results.

HORSIC Signature guessing probability = (1 / (26%) 256—¢ (%)

(1/264) is the maximum length of data processed using SHA-256, where the maximum length of a

message is 26 bits. 256 is the number of SHA-256 processes, and c is a compositional integer value. So,
this equation shows that the probability of guessing the HORSIC signature is small, providing a very high
level of security. Based on the discussion about signature guessing in HORST, HORSIC, and MHORST, it
can be concluded that the probability of signature guessing in MHORST is less than in HORST but greater
than in HORSIC.

4. CONCLUSION

In this research, the main problem with the HORST method is that it is easy to guess the
signature since the public key is generated from the concatenation of all signatures. This problem has
been overcome by the HORSIC method. However, the execution time increased due to the added
complexity of integer composition and repetitive SHA-256 processing. The MHORST method is proposed
to overcome HORST's vulnerability and optimize HORSIC's execution time. The first contribution of
MHORST is reducing the execution time using SHA-256 and the Merkle tree. The second contribution is
decreasing the probability of signature guessing by randomizing the public key using the Mersenne
Twister.

Based on the experiment result, it is proven that the MHORST method can overcome the
problem of HORST because the probability of signature guessing in MHORST is less than in HORST. The
MHORST method overcomes the problem of the HORSIC method, which is the high execution time. The
problem of HORSIC is overcome by MHORST using Merkle trees and the SHA-256 process to reduce the
execution time. Based on the experiment results, the execution times of the key generation, signing, and
verification are faster than those of HORSIC. Although the probability of signature guessing in MHORST
is greater compared to HORSIC, the MHORST method is still better than HORST. Based on the analysis
result, the suggestion for further research is to reduce the execution time on key generation in the
MHORST method.
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