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COVID-19 pandemic has significantly disrupted the aviation industry,

Article history: highlighting the critical need for accurate airport traffic predictions. This
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Revised Decembér 17. 2024 enhance airport traffic forecasting accuracy models from March to

December 2020. Data preprocessing was performed using Python's
Pandas library. This involved filtering, scaling using min-max
normalization, and splitting the data into 80:20 training-testing split
using Python's Pandas library. Various optimization techniques—
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RMSProp, Adam, Nadam, Adamax, AdamW, and Lion—were applied,

Keywords: along with ReduceLROnPlateau, to optimize model performance. The
Accuracy Prediction models were evaluated using Mean Absolute Percentage Error (MAPE),
Airport Traffic Mean Absolute Error (MAE), and Mean Squared Error (MSE). The best
BiGRU predictive performance was observed in the United States using the
CNN-BiGRU CNN-BiGRU model with the Adam optimizer, achieving the lowest MAE
of 0.0580, MSE of 0.0097, and MAPE of 0.0979. The use of a balanced
COVID-19 dataset, representing each airport's traffic as a percentage of a baseline
period, significantly improved prediction accuracy. This research
provides valuable insights for stakeholders seeking effective airport
traffic prediction methods during unprecedented times.
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1. INTRODUCTION

Airports significantly contribute to global connectivity, enabling seamless travel for millions of
passengers and facilitating the transportation of goods [1]. The COVID-19 pandemic of 2020 had a
devastating impact on the aviation industry, leading to significant disruptions and economic losses,
leading to a sharp decline in air travel and the grounding of a substantial portion of the world's passenger
aircraft fleet [2]. Recent advancements in air traffic prediction have led to a surge in interest in
sophisticated techniques. Researchers have delved into a diverse array of methods, including statistical
models, computational intelligence algorithms, and hybrid approaches, to analyze time series data and
forecast future trends [3],[4]. By analyzing historical data, time series analysis enables us to uncover
hidden patterns and make informed predictions about future events [5]. Among the models evaluated,
the Gated Recurrent Unit (GRU) and the Long Short-Term Memory (LSTM) networks have demonstrated
superior performance [6]. Although the LSTM model offers slightly better predictive accuracy than the
GRU, it comes at the cost of significantly higher space complexity and longer training times [7]. To
enhance predictive capabilities further, the Bidirectional Gated Recurrent Unit (Bi-GRU) is employed,
capturing bidirectional information within time series data more effectively [8].
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Numerous studies have explored techniques for predicting and analyzing airport operations.
For instance, a recent study [9] proposed a hybrid model combining time-domain convolutional
networks (TCNs) and bidirectional gated recurrent units (BiGRUs) to predict aircraft trajectories. This
approach effectively captures both spatial and temporal dependencies in the data. Another study [10],
investigated the use of CNN-BiGRU-AAM models for predicting traffic flow under various weather
conditions. The results demonstrated the model's ability to accurately capture periodic patterns and
distinguish between peak hours, even in adverse weather conditions. Additionally, research has been
conducted on using TCN-DAGRU models [11] for predicting civil aircraft risks and BiGRU models[12],
for real-time wave height prediction. These studies have shown the effectiveness of these models in
capturing complex temporal dependencies and making accurate predictions. Finally, a hybrid 1D-CNN
and attention-based Bi-GRU model [13], has been proposed for moisture content detection,
demonstrating the potential of combining multiple techniques to improve prediction accuracy.

In this paper, we conduct our main contribution on comparative analysis of two advanced
models for forecasting airport traffic: the Bidirectional Gated Recurrent Unit (BiGRU) and the CNN-
BiGRU (Convolutional Neural Network - Bidirectional Gated Recurrent Unit). Our study utilizes
multivariate time series data, focusing on airport traffic volumes expressed as a percentage relative to a
reference period. We assess the models using key performance metrics, Mean Absolute Percentage Error
(MAPE), including Mean Absolute Error (MAE), and Mean Squared Error (MSE). To ensure data quality
and consistency, preprocessing steps are applied before model implementation. The preprocessed data
is first fed into the CNN model to extract local features and sequential relations through CNN. While
CNNs excel at capturing spatial information, they fall short in recognizing sequential correlations within
the data [14]. To overcome this limitation, we incorporate bidirectional neural networks (BiGRU), which
provide enhanced performance over unidirectional GRU networks by processing information in both
forward and backward directions [15]. Our bidirectional GRU network is designed to extract critical
features from data sequences in both temporal directions. Additionally, we introduce an attention
mechanism to assign varying weights to each hidden layer, thereby improving prediction accuracy. This
dual-directional approach enhances the network's ability to account for temporal dependencies within
the sequence, leading to more accurate forecasting results [16].

Additionally, we investigate the use of various optimizers, such as Root Mean Squared
Propagation (RMSProp), Adam, Nadam, Adamax, AdamW, and Lion, combined with ReduceLROnPlateau,
for predicting airport traffic. ReduceLROnPlateau is employed to dynamically adjust the learning rate
during training when the performance metric stops improving, thereby preventing overfitting and
enhancing the predictive performance of the models. This study examines the performance of BiGRU
and CNN-BiGRU models in forecasting airport traffic using data from the USA, Canada, Chile, and
Australia. The findings of this research can provide valuable insights for improving airport operations
and resource allocation.

2. METHOD

This study contributes to the field of airport traffic forecasting by systematically evaluating the
performance of BIGRU and CNN-BiGRU models. We collected and preprocessed airport traffic data from
Kaggle [17], followed by data preprocessing steps, including filtering, cleaning, and applying a MinMax
Scaler. The data was then split into training (80%) and testing (20%) sets. We implemented recurrent
layer models using GRU and CNN-GRU and explored the use of various optimizers, including Root Mean
Square Propagation (RMSProp), Adam, Nadam, AdamW, Adamax, and Lion, to assess their impact on the
model’s predictive capabilities, followed by parameter tuning and the application of ReduceLROnPlateau
to dynamically adjust the learning rate. The prediction results with default optimizers were compared
to those obtained after parameter tuning, using performance metrics such as MAE and MAPE.
Additionally, we provided prediction graphs for GRU and CNN-GRU results compared to the actual data.
The processes and outcomes of these stages are illustrated in Figure 1 below.
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Figure 1. Flowchart Designof Airport Traffic

2.1. Dataset

In this study, we utilized a publicly available Kaggle dataset covering March 16, 2020, to
December 12, 2020 [17]. The dataset, which includes 7,247 daily aggregated data points, features a
single numerical attribute, 'PercentOfBaseline’, that can be adjusted or reorganized. As detailed in Table
1.

Table 1. Dataset Describe Transpose
count mean std min _ 25% 50% 75% max
PercentOfBaseline  7247.0  66.651442 22.134433 0.0 53.0 67.0 84.0 100.0

The data was sourced from 27 airports across four countries: the United States (17 airports), Canada (9
airports), Chile (1 airport), and Australia (1 airport), as detailed in Table 2.

Table 2. Airport count

Country Count
USA 17
Canada 9
Australia 1
Chile 1

2.2. Data Preprocessing

To ensure the accuracy of our analysis, we implemented key preprocessing steps: filtering,
cleaning, and normalization with MinMaxScaler. Filtering removed extraneous data, focusing on
essential parameters like 'Date’, 'AirportName’, and 'PercentOfBaseline’, which reduced noise and bias.
Data cleaning addressed inconsistencies, missing values, and errors, enhancing data quality for reliable
analysis [18]. Finally, we normalized the 'PercentOfBaseline’ values using MinMaxScaler, which scaled
the datato a range between 0 and 1, ensuring consistent feature relationships and improving the model's
learning efficiency. This process is mathematically represented by equation (1), where the
MinMaxScaler adjusts values accordingly:

o x-min(x)
r = max(x)—min(x) (1)
Comparison Of Airport Traffic Prediction Performance Using BiGRU and CNN-BiGRU Models (Willy Riyadit, 14
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2.3. Train/Test Split

To address the imbalance in airport data across countries, we used a methodological approach
to enhance data representativeness. We calculated a daily average airport baseline for each country
using the Pandas groupby().mean() function, ensuring a more balanced dataset that reflects overall
airport activity within each country. This approach mitigates the dominance of data from countries like
the USA, reducing bias and improving fairness in cross-country comparisons. While averaging may
smooth out extreme values and reduce variability, potentially losing some detailed information, it
enhances the model's generalizability by preventing over-reliance on data from countries with higher
record volumes. We validated this approach by splitting the dataset into 80% training and 20% testing,
applying the method to data from the USA, Canada, Chile, and Australia, as shown in Table 3, to assess
its impact on model robustness and predictive accuracy.

Table 3. Train/Test split result
Training  Testing Total

Country (80%)  (20%)  (100%)
United States of America 210 52 262
Chile 191 47 238
Canada 210 52 262
Australia 206 51 257

24. Algorithms

The Bidirectional Gated Recurrent Unit (BiGRU) is a powerful neural network architecture
designed to address the challenges of long-term dependency and vanishing gradients in sequential data.
By processing sequences in both forward and backward directions, BiGRU effectively captures long-

range temporal dependencies, leading to improved model performance [19]. In this context, ﬁt and Et
represent the hidden-layer states of the forward and backward computations, respectively, as
mathematically described in equation (2).

Yt = U(ht: ht) (2)
Our BiGRU Model Parameter settings are presented in Table 4:

Table 4. BiIGRU Model Parameter Settings
Layer Parameter Value
BiGRU Layer 1 ~ Units 64

Activation Function ELU
Return Sequences TRUE
Dropout Layer  Dropout Rate 0.2
BiGRU Layer 2  Units 32
Activation Function ELU
Return Sequences FALSE
Dense Layer Units 1

This research employs a two-layer Bidirectional Gated Recurrent Unit (BiGRU) network. The
first BiGRU layer is configured with return_sequences=True to capture long-range dependencies, while
the second layer with return_sequences=False outputs the final sequence. A dropout layer is included to
mitigate overfitting. Finally, a fully connected layer is used to leverage the extracted features and make
the final prediction. Figure 2 illustrates the BiGRU model architecture used in this study, based on our
parameter settings :
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Figure 2. BiGRU Plot Model

This research employs one-dimensional Convolutional Neural Networks (1D CNNs) to process
time series and text data, effectively capturing sequential contextual information [20]. In this study, 1D
CNNs are utilized to extract temporal features. To optimize the performance of the deep CNN and GRU
layers, careful hyperparameter tuning was conducted based on prior research and validated through
performance evaluation. The specific parameter settings for our CNN-BiGRU model are detailed in Table

5.

Table 5. CNN-BiGRU Model Parameter Settings

Layer Parameter Value
Convolutional Layer 1  Filters 64
Kernel Size 2
Stride 1
Activation Function ELU
Padding Same
BiLSTM Layer 1 Units 64
Activation Function ELU
Return Sequences TRUE
Dropout Layer Dropout Rate 0.2
Convolutional Layer 2 Filters 32
Kernel Size 2
Stride 1
Activation Function ELU
Padding Same
BiLSTM Layer 2 Units 32
Activation Function ELU
Return Sequences FALSE
Dense Layer Units 1

This research employs a one-layer Conv1D network with a dropout layer to mitigate overfitting.
This is followed by a two-layer BiGRU network, where the first layer is configured with

return_sequences=True

to

capture

temporal

dependencies,

and

the

second

layer

return_sequences=False to output the final sequence. Finally, a fully connected layer is utilized to
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leverage the spatial correlation patterns extracted from the previous layers. Figure 3 illustrates the
BiGRU model architecture used in this study, based on our parameter settings.

convid (Conv1D)

Input shape: (None, 78, 1) Qutput shape: (None, 78, 64)

bidirectional_2 (Bidirectional)

Input shape: (None, 78, 64) | Output shape: (None, 78, 128)

!

dropout_1 (Dropout)

Input shape: (None, 78, 128) | Output shape: (None, 78, 128)

convid_1 (ConviD)

Input shape: (None, 78, 128) | Output shape: (None, 78, 32)

bidirectional_3 (Bidirectional)

Input shape: (None, 78, 32) | OCutput shape: (None, 64)

dense_1 (Dense)

Input shape: (None, 64) | Output shape: (None, 1)

Figure 3. CNN-BiGRU Plot Model

2.4. Performance Metrics

To evaluate and compare the performance of the implemented methods, we calculate the Mean Absolute
Error (MAE) using Equation (3). MAE measures the average magnitude of errors between actual and
predicted airport baseline values, regardless of their direction. The actual airport baseline value is
denoted as P;, and the predicted value is denoted as P;.
|P;—Pi

- 3)
Equation (4) is used to calculate the Mean Absolute Percentage Error (MAPE), a metric that assesses the
relative accuracy of predictions. MAPE measures the average percentage difference between actual and
predicted airport baseline values. Here, P; represents the actual airport baseline value, P; denotes the
predicted value, and N is the total number of observations.

MAE =3I,

1 Pi_ﬁi
MAPE = 23N, |P—| X 100 (4)

Equation (5) is used to calculate the Mean Squared Error (MSE) from a sample of N data points. It
measures the average squared difference between the actual airport baseline values, P;, and the
predicted values, I3i.
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MSE =13, (P,— P1)* (5)

3. RESULT AND DISCUSSION

We chose the optimizers RMSProp, Adam, Nadam, AdamW, Adamax, and Lion for their proven
effectiveness in optimization tasks. RMSProp adapts learning rates for non-stationary problems, Adam
combines RMSProp with momentum for robustness, Nadam adds Nesterov momentum for faster
convergence, AdamW improves generalization by separating weight decay, Adamax handles large
parameter spaces, and Lion efficiently manages large datasets. For model training, we used 60 epochs
and a batch size of 32 to balance efficiency and performance. The ReduceLROnPlateau with patience=3
and factor=0.2 adjusted the learning rate to fine-tune the model, with min_delta=0.00001 and
min_Ilr=0.00000001 ensuring significant improvements and preventing excessively small learning rates.
We evaluated model performance using MAE, MSE, and MAPE. beta_1=0.00009, beta_2=0.00009,
weight_decay=0.00001

We applied parameter tuning to optimize performance, setting specific hyperparameters for the
RMSProp optimizer, we used specific hyperparameters, including rho=0.000001, which controls the
moving average of squared gradients, weight_decay=0.000001 to help prevent overfitting by adding a
regularization term to the loss function, and enabled exponential moving average (EMA) with
ema_momentum=0.000001, which influences the smoothing factor, leading to more stable training.
Similarly, for the Adam, Nadam, AdamW, Adamax, and Lion optimizers, we set beta_1=0.0001,
determining the exponential decay rate for the first moment estimates (i.e., the mean of gradients), and
beta_2=0.000001, weight_decay=0.000001, controlling the exponential decay rate for the second-
moment estimates (i.e, the variance of gradients). EMA was also utilized with
ema_momentum=0.000001, contributing to more stable training and validating them through grid
search. Table 6 summarizes the performance metrics for various countries, with training conducted in a
Python environment on Visual Studio Code. This process allowed us to assess the effectiveness of the
optimization techniques in predicting airport traffic percentages.

Table 6. Performance in different optimizer

Country Model Optimizer MAE MSE MAPE
RMSprop 0.0598 0.0101 0.1007
Adam 0.0614 0.0108 0.1037
BiGRU Nadam 0.0882 0.0129 0.1256
Adamax 0.0593 0.0104 0.1006
AdamW 0.0752 0.0105 0.1115
USA Lion 0.0784 0.0108 0.1151
RMSprop 0.0588 0.0106 0.1003
Adam 0.058 0.0097 0.0979
. Nadam 0.1391 0.0291 0.209
CNN-BIGRU Adamax 0.0578 0.0105 0.0988
AdamW 0.1382 0.029 0.208
Lion 0.1427 0.0305 0.2145
RMSprop 0.1021 0.0137 0.3108
Adam 0.0377 0.003 0.2302
BiGRU Nadam 0.0448 0.0038 0.2514
Adamax 0.0373 0.0029 0.2532
AdamW 0.0399 0.0032 0.2356
Australia Lion 0.0461 0.0039 0.2544
RMSprop 0.0467 0.0037 0.2808
Adam 0.0649 0.0067 0.275
. Nadam 0.0399 0.0033 0.237
CNN-BIGRU Adamax 0.0678 0.0072 0.2822
AdamW 0.0383 0.0031 0.236
Lion 0.0405 0.0033 0.239
RMSprop 0.1268 0.0225 0.2817
. . Adam 0.1229 0.0214 0.2774
Chile BIGRU Nadam 01302  0.0235  0.2873
Adamax 0.1077 0.0173 0.268
Comparison Of Airport Traffic Prediction Performance Using BiGRU and CNN-BiGRU Models (Willy Riyadit, 18
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Country Model Optimizer MAE MSE MAPE
AdamW 0.1251 0.0217 0.2828
Lion 0.1222 0.0211 0.2774
RMSprop 0.1261 0.0226 0.2789

Adam 0.1235 0.0216 0.277
. Nadam 0.1271 0.0227 0.2795
CNN-BIGRU Adamax 0.1312 0.0239 0.2862
AdamW 0.1275 0.0229 0.2822
Lion 0.1128 0.0189 0.2626
RMSprop 0.0799 0.0156 0.1452
Adam 0.076 0.0154 0.1401
BiGRU Nadam 0.1035 0.0232 0.1816
Adamax 0.0746 0.0154 0.1388
AdamW 0.0929 0.0206 0.1678
Canada Lion 0.0767 0.0153 0.1407
RMSprop 0.0747 0.0154 0.1406
Adam 0.0737 0.0155 0.1396
. Nadam 0.0716 0.0159 0.1375
CNN-BIGRU Adamax 0.1242 0.0285 0.2077
AdamW 0.0751 0.0152 0.1394
Lion 0.074 0.0155 0.1393

Figures 4 visually represent these results, showing prediction outcomes with the top optimizers
for both models. The red line indicates actual baseline data, the blue line shows predictions by the GRU
model, and the green line represents CNN-GRU predictions, allowing us to assess optimizer performance
in predicting airport traffic percentages
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Figure 4. Best prediction result for each country

This study provides valuable insights into the application of deep learning models for airport
baseline forecasting. While the BiGRU and CNN-BiGRU models demonstrated potential, their
performance was constrained by data limitations due to the limited and imbalanced dataset. In terms of
optimizer performance across countries, the CNN-BiGRU model generally outperformed the BiGRU
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model. USA: CNN-BiGRU with Adam (MAE: 0.0580, MSE: 0.0097, MAPE: 0.0979) ranked better than
BiGRU with Adamax. Australia: BiGRU with Adamax (MAE: 0.0373, MSE: 0.0029) slightly outperformed
CNN-BiGRU with AdamW, though the latter had a lower MAPE. Chile: CNN-BiGRU with Lion (MAPE:
0.2626) achieved a lower MAPE, but BiGRU with Adamax had better MAE and MSE. Canada: CNN-BiGRU
with Nadam (MAE: 0.0716, MAPE: 0.1375) performed better overall than BiGRU with Adamax. Future
research should prioritize the collection of high-quality, large-scale datasets to enable the development
of more robust and accurate forecasting models. Additionally, exploring innovative techniques such as
transfer learning and domain adaptation can help mitigate the impact of data scarcity in specific regions.
By addressing these challenges, we can advance the field of airport baseline forecasting and contribute
to improved operational efficiency and passenger experience.
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