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COVID-19 pandemic has significantly disrupted the aviation industry, 
highlighting the critical need for accurate airport traffic predictions. This 
study compares the performance of BiGRU and CNN-BiGRU models to 
enhance airport traffic forecasting accuracy models from March to 
December 2020. Data preprocessing was performed using Python's 
Pandas library. This involved filtering, scaling using min-max 
normalization, and splitting the data into 80:20 training-testing split 
using Python's Pandas library. Various optimization techniques—
RMSProp, Adam, Nadam, Adamax, AdamW, and Lion—were applied, 
along with ReduceLROnPlateau, to optimize model performance. The 
models were evaluated using Mean Absolute Percentage Error (MAPE), 
Mean Absolute Error (MAE), and Mean Squared Error (MSE). The best 
predictive performance was observed in the United States using the 
CNN-BiGRU model with the Adam optimizer, achieving the lowest MAE 
of 0.0580, MSE of 0.0097, and MAPE of 0.0979. The use of a balanced 
dataset, representing each airport's traffic as a percentage of a baseline 
period, significantly improved prediction accuracy. This research 
provides valuable insights for stakeholders seeking effective airport 
traffic prediction methods during unprecedented times. 
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1. INTRODUCTION 

 Airports significantly contribute to global connectivity, enabling seamless travel for millions of 
passengers and facilitating the transportation of goods [1]. The COVID-19 pandemic of 2020 had a 
devastating impact on the aviation industry, leading to significant disruptions and economic losses, 
leading to a sharp decline in air travel and the grounding of a substantial portion of the world's passenger 
aircraft fleet [2]. Recent advancements in air traffic prediction have led to a surge in interest in 
sophisticated techniques. Researchers have delved into a diverse array of methods, including statistical 
models, computational intelligence algorithms, and hybrid approaches, to analyze time series data and 
forecast future trends [3],[4]. By analyzing historical data, time series analysis enables us to uncover 
hidden patterns and make informed predictions about future events [5].  Among the models evaluated, 
the Gated Recurrent Unit (GRU) and the Long Short-Term Memory (LSTM) networks have demonstrated 
superior performance [6]. Although the LSTM model offers slightly better predictive accuracy than the 
GRU, it comes at the cost of significantly higher space complexity and longer training times [7]. To 
enhance predictive capabilities further, the Bidirectional Gated Recurrent Unit (Bi-GRU) is employed, 
capturing bidirectional information within time series data more effectively [8]. 

http://u.lipi.go.id/1466480524
http://u.lipi.go.id/1464049910
https://doi.org/10.15575/join.v10i1.1362


 
JOIN | Volume 10 No. 1 | June 2025: 12-21  

 

 

 
 13 
 

Numerous studies have explored techniques for predicting and analyzing airport operations. 
For instance, a recent study [9] proposed a hybrid model combining time-domain convolutional 
networks (TCNs) and bidirectional gated recurrent units (BiGRUs) to predict aircraft trajectories. This 
approach effectively captures both spatial and temporal dependencies in the data. Another study [10], 
investigated the use of CNN-BiGRU-AAM models for predicting traffic flow under various weather 
conditions. The results demonstrated the model's ability to accurately capture periodic patterns and 
distinguish between peak hours, even in adverse weather conditions. Additionally, research has been 
conducted on using TCN-DAGRU models [11] for predicting civil aircraft risks and BiGRU models[12], 
for real-time wave height prediction. These studies have shown the effectiveness of these models in 
capturing complex temporal dependencies and making accurate predictions. Finally, a hybrid 1D-CNN 
and attention-based Bi-GRU model [13], has been proposed for moisture content detection, 
demonstrating the potential of combining multiple techniques to improve prediction accuracy. 

In this paper, we conduct our main contribution on comparative analysis of two advanced 
models for forecasting airport traffic: the Bidirectional Gated Recurrent Unit (BiGRU) and the CNN-
BiGRU (Convolutional Neural Network – Bidirectional Gated Recurrent Unit). Our study utilizes 
multivariate time series data, focusing on airport traffic volumes expressed as a percentage relative to a 
reference period. We assess the models using key performance metrics, Mean Absolute Percentage Error 
(MAPE), including Mean Absolute Error (MAE), and Mean Squared Error (MSE). To ensure data quality 
and consistency, preprocessing steps are applied before model implementation. The preprocessed data 
is first fed into the CNN model to extract local features and sequential relations through CNN. While 
CNNs excel at capturing spatial information, they fall short in recognizing sequential correlations within 
the data [14]. To overcome this limitation, we incorporate bidirectional neural networks (BiGRU), which 
provide enhanced performance over unidirectional GRU networks by processing information in both 
forward and backward directions [15]. Our bidirectional GRU network is designed to extract critical 
features from data sequences in both temporal directions. Additionally, we introduce an attention 
mechanism to assign varying weights to each hidden layer, thereby improving prediction accuracy. This 
dual-directional approach enhances the network's ability to account for temporal dependencies within 
the sequence, leading to more accurate forecasting results [16]. 

Additionally, we investigate the use of various optimizers, such as Root Mean Squared 
Propagation (RMSProp), Adam, Nadam, Adamax, AdamW, and Lion, combined with ReduceLROnPlateau, 
for predicting airport traffic. ReduceLROnPlateau is employed to dynamically adjust the learning rate 
during training when the performance metric stops improving, thereby preventing overfitting and 
enhancing the predictive performance of the models. This study examines the performance of BiGRU 
and CNN-BiGRU models in forecasting airport traffic using data from the USA, Canada, Chile, and 
Australia. The findings of this research can provide valuable insights for improving airport operations 
and resource allocation. 
 
2. METHOD 

This study contributes to the field of airport traffic forecasting by systematically evaluating the 
performance of BiGRU and CNN-BiGRU models. We collected and preprocessed airport traffic data from 
Kaggle [17], followed by data preprocessing steps, including filtering, cleaning, and applying a MinMax 
Scaler. The data was then split into training (80%) and testing (20%) sets. We implemented recurrent 
layer models using GRU and CNN-GRU and explored the use of various optimizers, including Root Mean 
Square Propagation (RMSProp), Adam, Nadam, AdamW, Adamax, and Lion, to assess their impact on the 
model’s predictive capabilities, followed by parameter tuning and the application of ReduceLROnPlateau 
to dynamically adjust the learning rate. The prediction results with default optimizers were compared 
to those obtained after parameter tuning, using performance metrics such as MAE and MAPE. 
Additionally, we provided prediction graphs for GRU and CNN-GRU results compared to the actual data. 
The processes and outcomes of these stages are illustrated in Figure 1 below.  
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Figure 1. Flowchart Designof Airport Traffic 

2.1.   Dataset 

In this study, we utilized a publicly available Kaggle dataset covering March 16, 2020, to 
December 12, 2020 [17]. The dataset, which includes 7,247 daily aggregated data points, features a 
single numerical attribute, 'PercentOfBaseline', that can be adjusted or reorganized. As detailed in Table 
1. 

 
Table 1. Dataset Describe Transpose 

 count mean std min 25% 50% 75% max 
PercentOfBaseline 7247.0 66.651442 22.134433 0.0 53.0 67.0 84.0 100.0 

 
The data was sourced from 27 airports across four countries: the United States (17 airports), Canada (9 
airports), Chile (1 airport), and Australia (1 airport), as detailed in Table 2. 
 

Table 2. Airport count 
Country Count 

USA 17 
Canada 9 

Australia 1 
Chile 1 

 

2.2.   Data Preprocessing 

To ensure the accuracy of our analysis, we implemented key preprocessing steps: filtering, 
cleaning, and normalization with MinMaxScaler. Filtering removed extraneous data, focusing on 
essential parameters like 'Date', 'AirportName', and 'PercentOfBaseline', which reduced noise and bias. 
Data cleaning addressed inconsistencies, missing values, and errors, enhancing data quality for reliable 
analysis [18]. Finally, we normalized the 'PercentOfBaseline' values using MinMaxScaler, which scaled 
the data to a range between 0 and 1, ensuring consistent feature relationships and improving the model's 
learning efficiency. This process is mathematically represented by equation (1), where the 
MinMaxScaler adjusts values accordingly:  

 

𝑥′ =
𝑥−𝑚𝑖𝑛(𝑥)

𝑚𝑎𝑥(𝑥)−𝑚𝑖𝑛(𝑥)
  (1) 
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2.3.   Train/Test Split 

To address the imbalance in airport data across countries, we used a methodological approach 
to enhance data representativeness. We calculated a daily average airport baseline for each country 
using the Pandas groupby().mean() function, ensuring a more balanced dataset that reflects overall 
airport activity within each country. This approach mitigates the dominance of data from countries like 
the USA, reducing bias and improving fairness in cross-country comparisons. While averaging may 
smooth out extreme values and reduce variability, potentially losing some detailed information, it 
enhances the model's generalizability by preventing over-reliance on data from countries with higher 
record volumes. We validated this approach by splitting the dataset into 80% training and 20% testing, 
applying the method to data from the USA, Canada, Chile, and Australia, as shown in Table 3, to assess 
its impact on model robustness and predictive accuracy. 

Table 3. Train/Test split result 

Country 
Training 
(80%) 

Testing 
(20%) 

Total 
(100%) 

United States of America 210 52 262 
Chile 191 47 238 
Canada 210 52 262 
Australia 206 51 257 

2.4.   Algorithms 

The Bidirectional Gated Recurrent Unit (BiGRU) is a powerful neural network architecture 
designed to address the challenges of long-term dependency and vanishing gradients in sequential data. 
By processing sequences in both forward and backward directions, BiGRU effectively captures long-

range temporal dependencies, leading to improved model performance [19]. In this context, ℎ⃗ 𝑡  and ℎ⃗⃖𝑡 
represent the hidden-layer states of the forward and backward computations, respectively, as 
mathematically described in equation (2). 

𝑦𝑡 = 𝜎(ℎ⃗ 𝑡 , ℎ⃗⃖𝑡) (2) 

 
Our BiGRU Model Parameter settings are presented in Table 4: 
 

Table 4. BiGRU Model Parameter Settings 
Layer Parameter Value 
BiGRU Layer 1 Units 64  

Activation Function ELU  
Return Sequences TRUE 

Dropout Layer Dropout Rate 0.2 
BiGRU Layer 2 Units 32  

Activation Function ELU  
Return Sequences FALSE 

Dense Layer Units 1 

 
This research employs a two-layer Bidirectional Gated Recurrent Unit (BiGRU) network. The 

first BiGRU layer is configured with return_sequences=True to capture long-range dependencies, while 
the second layer with return_sequences=False outputs the final sequence. A dropout layer is included to 
mitigate overfitting. Finally, a fully connected layer is used to leverage the extracted features and make 
the final prediction. Figure 2 illustrates the BiGRU model architecture used in this study, based on our 
parameter settings : 
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Figure 2. BiGRU Plot Model 

This research employs one-dimensional Convolutional Neural Networks (1D CNNs) to process 
time series and text data, effectively capturing sequential contextual information [20]. In this study, 1D 
CNNs are utilized to extract temporal features. To optimize the performance of the deep CNN and GRU 
layers, careful hyperparameter tuning was conducted based on prior research and validated through 
performance evaluation. The specific parameter settings for our CNN-BiGRU model are detailed in Table 
5. 

Table 5. CNN-BiGRU Model Parameter Settings 
Layer Parameter Value 
Convolutional Layer 1 Filters 64  

Kernel Size 2  
Stride 1  
Activation Function ELU  
Padding Same 

BiLSTM Layer 1 Units 64  
Activation Function ELU  
Return Sequences TRUE 

Dropout Layer Dropout Rate 0.2 
Convolutional Layer 2 Filters 32  

Kernel Size 2  
Stride 1  
Activation Function ELU  
Padding Same 

BiLSTM Layer 2 Units 32  
Activation Function ELU  
Return Sequences FALSE 

Dense Layer Units 1 

 

This research employs a one-layer Conv1D network with a dropout layer to mitigate overfitting. 
This is followed by a two-layer BiGRU network, where the first layer is configured with 
return_sequences=True to capture temporal dependencies, and the second layer with 
return_sequences=False to output the final sequence. Finally, a fully connected layer is utilized to 

http://u.lipi.go.id/1466480524
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leverage the spatial correlation patterns extracted from the previous layers. Figure 3 illustrates the 
BiGRU model architecture used in this study, based on our parameter settings. 

 

 

Figure 3. CNN-BiGRU Plot Model 

2.4.  Performance Metrics 

To evaluate and compare the performance of the implemented methods, we calculate the Mean Absolute 
Error (MAE) using Equation (3). MAE measures the average magnitude of errors between actual and 
predicted airport baseline values, regardless of their direction. The actual airport baseline value is 
denoted as 𝑃𝑖, and the predicted value is denoted as 𝑃̂𝑖.  

𝑀𝐴𝐸 = ∑  𝑁
𝑖=1

|𝑃𝑖−𝑃̂𝑖|

𝑁
 (3) 

Equation (4) is used to calculate the Mean Absolute Percentage Error (MAPE), a metric that assesses the 
relative accuracy of predictions. MAPE measures the average percentage difference between actual and 
predicted airport baseline values. Here, 𝑃𝑖  represents the actual airport baseline value,  𝑃̂𝑖  denotes the 
predicted value, and 𝑁 is the total number of observations. 

𝑀𝐴𝑃𝐸 =
1

𝑁
∑  𝑁

𝑖=1 |
𝑃𝑖−𝑃̂𝑖

𝑃𝑖
| × 100 (4) 

Equation (5) is used to calculate the Mean Squared Error (MSE) from a sample of 𝑁 data points. It 
measures the average squared difference between the actual airport baseline values, 𝑃𝑖, and the 
predicted values, 𝑃̂𝑖. 
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𝑀𝑆𝐸 =
1

𝑁
∑  𝑁

𝑖=1 (𝑃𝑖 − 𝑃𝑖̂)
2

 (5) 

 
3. RESULT AND DISCUSSION 

We chose the optimizers RMSProp, Adam, Nadam, AdamW, Adamax, and Lion for their proven 
effectiveness in optimization tasks. RMSProp adapts learning rates for non-stationary problems, Adam 
combines RMSProp with momentum for robustness, Nadam adds Nesterov momentum for faster 
convergence, AdamW improves generalization by separating weight decay, Adamax handles large 
parameter spaces, and Lion efficiently manages large datasets. For model training, we used 60 epochs 
and a batch size of 32 to balance efficiency and performance. The ReduceLROnPlateau with patience=3 
and factor=0.2 adjusted the learning rate to fine-tune the model, with min_delta=0.00001 and 
min_lr=0.00000001 ensuring significant improvements and preventing excessively small learning rates. 
We evaluated model performance using MAE, MSE, and MAPE. beta_1=0.00009, beta_2=0.00009, 
weight_decay=0.00001 

We applied parameter tuning to optimize performance, setting specific hyperparameters for the 
RMSProp optimizer, we used specific hyperparameters, including rho=0.000001, which controls the 
moving average of squared gradients, weight_decay=0.000001 to help prevent overfitting by adding a 
regularization term to the loss function, and enabled exponential moving average (EMA) with 
ema_momentum=0.000001, which influences the smoothing factor, leading to more stable training. 
Similarly, for the Adam, Nadam, AdamW, Adamax, and Lion optimizers, we set beta_1=0.0001, 
determining the exponential decay rate for the first moment estimates (i.e., the mean of gradients), and 
beta_2=0.000001, weight_decay=0.000001, controlling the exponential decay rate for the second-
moment estimates (i.e., the variance of gradients). EMA was also utilized with 
ema_momentum=0.000001, contributing to more stable training and validating them through grid 
search. Table 6 summarizes the performance metrics for various countries, with training conducted in a 
Python environment on Visual Studio Code. This process allowed us to assess the effectiveness of the 
optimization techniques in predicting airport traffic percentages. 

 
Table 6. Performance in different optimizer 

Country Model Optimizer MAE MSE MAPE 

USA 

BiGRU 

RMSprop 0.0598 0.0101 0.1007 
Adam 0.0614 0.0108 0.1037 
Nadam 0.0882 0.0129 0.1256 
Adamax 0.0593 0.0104 0.1006 
AdamW 0.0752 0.0105 0.1115 

 Lion 0.0784 0.0108 0.1151 

CNN-BiGRU 

RMSprop 0.0588 0.0106 0.1003 
Adam 0.058 0.0097 0.0979 
Nadam 0.1391 0.0291 0.209 

Adamax 0.0578 0.0105 0.0988 
AdamW 0.1382 0.029 0.208 

Lion 0.1427 0.0305 0.2145 

Australia 

BiGRU 

RMSprop 0.1021 0.0137 0.3108 

Adam 0.0377 0.003 0.2302 
Nadam 0.0448 0.0038 0.2514 
Adamax 0.0373 0.0029 0.2532 
AdamW 0.0399 0.0032 0.2356 
Lion 0.0461 0.0039 0.2544 

CNN-BiGRU 

RMSprop 0.0467 0.0037 0.2808 
Adam 0.0649 0.0067 0.275 
Nadam 0.0399 0.0033 0.237 
Adamax 0.0678 0.0072 0.2822 
AdamW 0.0383 0.0031 0.236 
Lion 0.0405 0.0033 0.239 

Chile BiGRU 

RMSprop 0.1268 0.0225 0.2817 
Adam 0.1229 0.0214 0.2774 

Nadam 0.1302 0.0235 0.2873 
Adamax 0.1077 0.0173 0.268 

http://u.lipi.go.id/1466480524
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Country Model Optimizer MAE MSE MAPE 
AdamW 0.1251 0.0217 0.2828 
Lion 0.1222 0.0211 0.2774 

CNN-BiGRU 

RMSprop 0.1261 0.0226 0.2789 

Adam 0.1235 0.0216 0.277 
Nadam 0.1271 0.0227 0.2795 
Adamax 0.1312 0.0239 0.2862 
AdamW 0.1275 0.0229 0.2822 
Lion 0.1128 0.0189 0.2626 

Canada 

BiGRU 

RMSprop 0.0799 0.0156 0.1452 
Adam 0.076 0.0154 0.1401 
Nadam 0.1035 0.0232 0.1816 
Adamax 0.0746 0.0154 0.1388 

AdamW 0.0929 0.0206 0.1678 
Lion 0.0767 0.0153 0.1407 

CNN-BiGRU 

RMSprop 0.0747 0.0154 0.1406 
Adam 0.0737 0.0155 0.1396 
Nadam 0.0716 0.0159 0.1375 
Adamax 0.1242 0.0285 0.2077 
AdamW 0.0751 0.0152 0.1394 
Lion 0.074 0.0155 0.1393 

 
 Figures 4 visually represent these results, showing prediction outcomes with the top optimizers 
for both models. The red line indicates actual baseline data, the blue line shows predictions by the GRU 
model, and the green line represents CNN-GRU predictions, allowing us to assess optimizer performance 
in predicting airport traffic percentages 

  
 
 
 
 
 
 
 
 
 
 
 
  

Figure 4. Best prediction result for each country 
4. CONCLUSION 

This study provides valuable insights into the application of deep learning models for airport 
baseline forecasting. While the BiGRU and CNN-BiGRU models demonstrated potential, their 
performance was constrained by data limitations due to the limited and imbalanced dataset. In terms of 
optimizer performance across countries, the CNN-BiGRU model generally outperformed the BiGRU 
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model. USA: CNN-BiGRU with Adam (MAE: 0.0580, MSE: 0.0097, MAPE: 0.0979) ranked better than 
BiGRU with Adamax. Australia: BiGRU with Adamax (MAE: 0.0373, MSE: 0.0029) slightly outperformed 
CNN-BiGRU with AdamW, though the latter had a lower MAPE. Chile: CNN-BiGRU with Lion (MAPE: 
0.2626) achieved a lower MAPE, but BiGRU with Adamax had better MAE and MSE. Canada: CNN-BiGRU 
with Nadam (MAE: 0.0716, MAPE: 0.1375) performed better overall than BiGRU with Adamax. Future 
research should prioritize the collection of high-quality, large-scale datasets to enable the development 
of more robust and accurate forecasting models. Additionally, exploring innovative techniques such as 
transfer learning and domain adaptation can help mitigate the impact of data scarcity in specific regions. 
By addressing these challenges, we can advance the field of airport baseline forecasting and contribute 
to improved operational efficiency and passenger experience. 
 
ACKNOWLEDGEMENTS 

This research was a collaborative effort, supported by LPPM Universitas Dinamika Bangsa. The authors 
would like to thank their colleagues at Universitas Dinamika Bangsa for their contributions, including 
providing data, sharing expertise, and offering critical feedback. While the interpretations and 
conclusions presented in this paper are those of the authors, we acknowledge the valuable input of our 
collaborators. 
 
REFERENCES 

[1] Z. Yang, Y. Wang, J. Li, L. Liu, J. Ma, and Y. Zhong, “Airport Arrival Flow Prediction considering Meteorological Factors 
Based on Deep-Learning Methods,” Complexity, vol. 2020, p. 6309272, 2020, doi: 10.1155/2020/6309272. 

[2] S. V Gudmundsson, M. Cattaneo, and R. Redondi, “Forecasting temporal world recovery in air transport markets in the 
presence of large economic shocks: The case of COVID-19,” J Air Transp Manag, vol. 91, p. 102007, 2021, doi: 
https://doi.org/10.1016/j.jairtraman.2020.102007. 

[3] X. Zhang, H. Liu, Y. Zhao, and X. Zhang, “Multifractal detrended fluctuation analysis on air traffic flow time series: A sing le 
airport case,” Physica A: Statistical Mechanics and its Applications, vol. 531, p. 121790, 2019, doi: 
https://doi.org/10.1016/j.physa.2019.121790. 

[4] H. Liu, X. Zhang, and X. Zhang, “Multiscale multifractal analysis on air traffic flow time series: A single airport departure  
flight case,” Physica A: Statistical Mechanics and its Applications, vol. 545, p. 123585, 2020, doi: 
https://doi.org/10.1016/j.physa.2019.123585. 

[5] D. C. Tascón and O. Díaz Olariaga, “Air traffic forecast and its impact on runway capacity. A System Dynamics approach,” 
J Air Transp Manag, vol. 90, p. 101946, 2021, doi: https://doi.org/10.1016/j.jairtraman.2020.101946. 

[6] P. B. Weerakody, K. W. Wong, G. Wang, and W. Ela, “A review of irregular time series data handling with gated recurrent 
neural networks,” Neurocomputing, vol. 441, pp. 161–178, 2021, doi: https://doi.org/10.1016/j.neucom.2021.02.046. 

[7] R. Tang, Z. Yang, J. Lu, H. Liu, and H. Zhang, “Real-time Trajectory Prediction of Unmanned Aircraft Vehicles Based on 
Gated Recurrent Unit,” 2022, pp. 585–596. doi: 10.1007/978-981-16-5429-9_45. 

[8] X. Li, X. Ma, F. Xiao, C. Xiao, F. Wang, and S. Zhang, “Time-series production forecasting method based on the integration 
of Bidirectional Gated Recurrent Unit (Bi-GRU) network and Sparrow Search Algorithm (SSA),” J Pet Sci Eng, vol. 208, p. 
109309, Jan. 2022, doi: 10.1016/j.petrol.2021.109309. 

[9] J. Huang and W. Ding, “Aircraft Trajectory Prediction Based on Bayesian Optimised Temporal Convolutional Network–
Bidirectional Gated Recurrent Unit Hybrid Neural Network,” International Journal of Aerospace Engineering, vol. 2022, 
pp. 1–19, Dec. 2022, doi: 10.1155/2022/2086904. 

[10] S. Liu, W. Lin, Y. Wang, D. Z. Yu, Y. Peng, and X. Ma, “Convolutional Neural Network-Based Bidirectional Gated Recurrent 
Unit–Additive Attention Mechanism Hybrid Deep Neural Networks for Short-Term Traffic Flow Prediction,” 
Sustainability, vol. 16, no. 5, p. 1986, Feb. 2024, doi: 10.3390/su16051986. 

[11] D. Zhou, X. Zhuang, J. Cai, H. Zuo, X. Zhao, and J. Xiang, “An ensemble model using temporal convolution and dual attention 
gated recurrent unit to analyze risk of civil aircraft,” Expert Syst Appl, vol. 236, p. 121423, Feb. 2024, doi: 
10.1016/j.eswa.2023.121423. 

[12] F. Meng, T. Song, D. Xu, P. Xie, and Y. Li, “Forecasting tropical cyclones wave height using bidirectional gated recurrent 
unit,” Ocean Engineering, vol. 234, p. 108795, Aug. 2021, doi: 10.1016/j.oceaneng.2021.108795. 

[13] Q. Yuan, J. Wang, M. Zheng, and X. Wang, “Hybrid 1D-CNN and attention-based Bi-GRU neural networks for predicting 
moisture content of sand gravel using NIR spectroscopy,” Constr Build Mater, vol. 350, p. 128799, Oct. 2022, doi: 
10.1016/j.conbuildmat.2022.128799. 

[14] N. Zhao, H. Gao, X. Wen, and H. Li, “Combination of Convolutional Neural Network and Gated Recurrent Unit for Aspect-
Based Sentiment Analysis,” IEEE Access, vol. 9, pp. 15561–15569, 2021, doi: 10.1109/ACCESS.2021.3052937. 

[15] L. Zeng, W. Ren, and L. Shan, “Attention-based bidirectional gated recurrent unit neural networks for well logs prediction 
and lithology identification,” Neurocomputing, vol. 414, pp. 153–171, Nov. 2020, doi: 10.1016/j.neucom.2020.07.026. 

[16] P. Li et al., “Bidirectional Gated Recurrent Unit Neural Network for Chinese Address Element Segmentation,” ISPRS Int J 
Geoinf, vol. 9, no. 11, p. 635, Oct. 2020, doi: 10.3390/ijgi9110635. 

http://u.lipi.go.id/1466480524
http://u.lipi.go.id/1464049910


 
JOIN | Volume 10 No. 1 | June 2025: 12-21  

 

 

 
 21 
 

[17] T. Shin, “COVID-19’s Impact on Airport Traffic,” kaggle. Accessed: Jan. 10, 2023. [Online]. Available: 
https://www.kaggle.com/datasets/terenceshin/covid19s-impact-on-airport-traffic 

[18] I. M. Pires, F. Hussain, N. M. M. Garcia, P. Lameski, and E. Zdravevski, “Homogeneous Data Normalization and Deep 
Learning: A Case Study in Human Activity Classification,” Future Internet, vol. 12, no. 11, p. 194, Nov. 2020, doi: 
10.3390/fi12110194. 

[19] Z. Zhang et al., “An Improved Bidirectional Gated Recurrent Unit Method for Accurate State-of-Charge Estimation,” IEEE 
Access, vol. 9, pp. 11252–11263, 2021, doi: 10.1109/ACCESS.2021.3049944. 

[20] W. Choi, M.-J. Kim, M.-S. Yum, and D.-H. Jeong, “Deep Convolutional Gated Recurrent Unit Combined with Attention 
Mechanism to Classify Pre-Ictal from Interictal EEG with Minimized Number of Channels,” J Pers Med, vol. 12, no. 5, p. 
763, May 2022, doi: 10.3390/jpm12050763. 

 


	1. INTRODUCTION
	2. METHOD
	2.1.   Dataset
	2.2.   Data Preprocessing
	2.3.   Train/Test Split
	2.4.   Algorithms
	2.4.  Performance Metrics

	3. RESULT AND DISCUSSION
	ACKNOWLEDGEMENTS
	REFERENCES

