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This research is proposed to determine the performance of time series
machine learning in the presence of noise, where this approach is
intended to forecast time series data. The approach method chosen is
long short-term memory (LSTM), a development of recurrent neural
network (RNN). Another problem is the availability of data, which is not
limited to high-dimensional data but also limited data. Therefore, this
study tests the performance of long short-term memory using simulated
data, where the simulated data used in this study are data generated
from the functional autoregressive (FAR) model and data generated
from the functional autoregressive model of order 1 FAR(1) which is
given additional noise. Simulation results show that the long short-term
memory method in analyzing time series data in the presence of noise
outperforms by 1-5% the method without noise and data with limited
observations. The best performance of the method is determined by
testing the analysis of variance against the mean absolute percentage
error. In addition, the empirical data used in this study are the
percentage of poverty, unemployment, and economic growth in Java.
The method that has the best performance in analyzing each poverty
data is used to forecast the data. The comparison result for the empirical
data is that the M-LSTM method outperforms the LSTM in analyzing the
poverty percentage data. The best method performance is determined
based on the average value of the mean absolute percentage error of 1-
10%.
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1. INTRODUCTION

Statistical analysis research has developed rapidly and is used in various fields. This
development encourages researchers to find the best method or approach for various problems. One of
the results of this approach is used in forecasting. Forecasting is one method that can help make
decisions based on past and present data [1]. This forecasting approach is developing rapidly, ranging
from statistical methods such as autoregressive (AR) to the latest, namely deep learning. This
development is motivated by the various types of data and data-related problems that exist in life. One
problem in existing data requiring a renewed study of the approach method is time series data.
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Time series data problems that depend on the data are on data with a limited amount and
contain noise. The study of this problem in this research is proposed using a functional time series data
approach using the functional time series method [2]. This approach is one of the relatively new
statistical models with the influence of noise [3]. Functional time series is a statistical analysis method
for time series data where the data variable underlying the analysis is a function. Time series data
reconstructed into a function is done with the consideration that data that has become a smooth function
allows the existence of time series data that is not stationary and is affected by the presence of noise in
the model so that it is possible to be non-linear when generating data with the model. Based on these
considerations, the use of models makes sense. The method in functional time series used in this study
is functional autoregressive (FAR) [2],[3],[4]-

A recent approach whose studies need to be compared clearly and precisely to forecast this
functional data is time series machine learning [5]. Previous research by [6] mentioned that time
machine learning has good forecasting capabilities. One of the development approaches in machine
learning is artificial neural networks, and the development method is long short-term memory. In
general, the long short-term memory method was chosen in this study with the consideration that long
short-term memory can recognize data patterns very well and can forecast time series data well, besides
previous research [7], [8], [9] concluded that the long short-term memory (LSTM) method has good
accuracy and forecasting results.

Based on the described description, this research is intended to examine the advantages of
forecasting results related to the long short-term memory method, which in previous studies was
mentioned to be able to forecast well on high-dimensional data and data containing noise [10]. In
addition, this research also provides a view of the actual problems and availability of data with high-
dimensional data and limited data with a deep learning approach. Therefore, this research generates
data with various scenarios of the amount of data and noise with the long short-term memory method.
On the other hand, poverty is one of the problems related to time series data that we often encounter in
the socio-population field in everyday life. There are several adverse effects of poverty on people’s lives
and a country's economic situation. Therefore, this research will also compare and contrast the LSTM
and M-LSTM approaches and apply them to classified district and city-level poverty data in Java.

2. METHOD

2.1. Autoregressive (AR)

Autoregressive is one of the linear prediction modelling techniques in statistics [3]. The
autoregressive model uses a function of previous values, a particular form of time series, as a prediction.
This value is symbolized as p, which states the number of prior values used to predict the current value.
Suppose that Y;it is a stationary time series. The autoregressive model with order p AR(p) is
mathematically defined as [11]:

Vi=pu+dYea+dY o+ + Y +e; (1)

Where p is an intercept constant, ¢; where i = 1,2,3,...,p are the model parameters to be
estimated, Y;_; where i = 1,2,3, ...,p are the previous time series values, and e; is the residual error
where e, ~ WN(0,02). The parameters of the autoregressive model ¢; can be estimated using several
techniques such as Yule-Walker ([12], least square [13], [14], maximum likelihood [15]. In
autoregressive methods, the model chosen to be used in the analysis is strongly influenced by the lag
selection of the partial autocorrelation function (PACF) plot, where the best model will be chosen based
on the most significant accuracy value of the tentative model. This accuracy can be calculated, for
example, using Akaike's information criterion (AIC) [16], [17], [18], Bayesian information criterion (BIC)
[19], [20].

2.2, Functional Data Analysis (FDA)

Functional data analysis is one of the statistical analysis methods where the data of the variable
underlying the study is a function [21]. This method is also a relatively new one for analysis in statistics
[3]- It has several advantages, including being able to analyse very heterogeneous data, being able to
forecast data better than standard forecasting methods, being able to handle data with variables that
have varying time relationships, having relatively low errors compared to traditional forecasting

217



JOIN (Jurnal Online Informatika) p-ISSN: 2528-1682
e-ISSN: 2527-9165

methods, and being able to capture data with complex patterns [22]. Functional data analysis is used to
analyze data by assuming that each data is a single structured functional object, which can be used for
time series data in the development of research. This data is a smooth curve that can be in the form of
time or space. Suppose the data used is time-dependent ty,t,, ..., t,, defined as ¥;; , Y; 1, ..., ¥; ¢, then to
reconstruct the data into a function, one of the methods that can be used is the basis function [2]. The
basis function is a set of special functions ¢; from the functional space. Suppose ¢; wherei = 1,2,3,..., N
is the basis function of the functional area, then the basis expansion Y; (k) is mathematically defined as

follows:
N

AGESWEAC) @)

=1

With a; where i = 1,2,3, ..., N are actual values of the coefficients [23]. Some of the bases that
can be used are spline basis [24], Fourier basis [25], and wavelet basis [26]. Data reconstructed into this
function can then be further analysed, one of which is by using functional autoregressive.

2.3. Functional Autoregressive (FAR)

Functional autoregressive is one of the methods in statistics where the resulting model [2]. In
its development, this method is widely used to analyse time series problems in various fields, such as
energy, economics, and climate. Suppose the function Y;(k) has a mean function u(k) and covariance
C (x), namely:

C00 = [ B(r@m00). x(0dk 3)

By using Mercer's theorem that the condition that a function can be a kernel function must
produce a kernel matrix that is positive-semi-definite [27], then:

C(x) = Z Ai{vj, x)v;,j €N (4)
j=1
Where 4; is the eigenvalue in descending order and v; is the normalized eigen function.
C(v) = A, (5)
And
vl = 1 (6)

The Karhonen-Loeve theorem states that if v;(k) is an orthonormal basis of 1?[0,1], then
(Y; — u,v;) is the principal component functional of Y; (k) and the value of Y;(k) can be expressed as
follows:

e(k) = k() + ) (¥ = ;)0 7)
The estimator oﬁllls functional time series parameter Y;(k), t = 1,2,3, ..., n for the mean u(k) is:
A0 =) V) ®)
and the covariznce C(x) isf:1
C00 = ) 0 0) = 4R, (1) = ) ©
where x € H.t'lflllus,r:che functional autoregressive model with order p (FAR(p)) is defined as follows:
Vo) = 1) = )" i (Yes00) = i) + e (1) (10)
i=1

where p; is a bounded linear operator where ;: H — H, Y,_; is the i-th lag of the Y; curve, and e, (k) is
white noise with mean equal to 0 and e, (k) € L% [2].
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2.4. Long Short-Term Memory (LSTM)

One of the statistical machine-learning forecasting techniques, long short-term memory
(LSTM), is derived from recurrent neural networks (RNN) [5]. This method frequently studies time
series data problems in various sectors, including health, economics, and climate, because it provides
better forecasts than typical time series prediction methods. The system's long short-term memory
(LSTM) features a multi-layered architectural design. The top layer is the input layer, followed by the
hidden layer and the output layer. This long short-term memory (LSTM) has one memory cell in the
buried layer, but several gates are included within one memory cell. Figure 1 depicts the long short-term
memory's (LSTM) overall architecture.

® ® )
t | t
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Figure 1. General architecture of long short-term memory (LSTM) based on [28].

The input gate is a gate that accepts both fresh inputs and prior outputs. The gate in this
procedure returns a value of 0 or 1. Assume that the input value in, is specified as follows:
ing = o(W;Y, + Wih_1 + b;) (11)

Suppose the memory cell's potential value, designated as C,, is as follows:
C; = tanh(W.Y; + W.h;_y + b.) (12)

Where h;_, is the state at time ¢ — 1, b is the bias, and W is the input gate weight. The forget
gate utilizes an activation function, receiving input at time ¢t and output at time ¢t — 1. Assume that the
forget gate f; is defined as follows:

As aresult, if the symbol C; represents the updated memory cell's state, then:
Co=ing xCp + fr * Cpq (14)

The gate that regulates how many states travel through this gate is the output gate. Let o,
represent the output gate's value, which is specified as follows:
out, = o(W,Y; + Woh—q + VoCe + by) (15)

If h; is the cell's ultimate output value, then:
h; = out, » tanh(C;) (16)

The output gate value is out;, and the updated memory cell state is C; [5], [6]. Additionally, the
sigmoid and tanh activation functions are methodically defined as follows:

1
771 +e™* (17)
tanh(x) = 20(2x) — 1 (18)

Where x is the input data, sigmoid activation function value, tanh activation function value, and
exponential value e are all present [29]. Each layer's output is produced in long short-term memory
using the activation function itself.
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2.5. Multiple-Long Short-Term Memory (M-LSTM)

Multiple long short-term memory (M-LSTM) is a statistical machine learning prediction
approach that is an upgraded long short-term memory method that uses multivariate input. In general,
the multiple long short-term memory approach has the same architecture as long short-term memory,
with the obvious distinction being the variable input component [30], [31].

2.6. Analysis Procedure

1. The following analysis steps for simulation study with LSTM are broadly divided into three
stages, namely:

a.  Generating data, first determining the number of observations and parameter values of
simulation data to be generated according to the scenario, then generate data with FAR(1)
with two predetermined scenarios (D;: FAR(1) with e(k)~N(0.5,1) and D,: FAR(1) from
the generated data is taken 10% randomly and given noise e(k)~N (0.5, 10), which is
added to the initial data to form new data, namely FAR*(1)). Third, divide the data into
training data and testing data.

b. Modelling and forecasting by using the LSTM to the generated training data, then doing
forecasting and calculating accuracy

c. Model performance evaluation, first repeating steps A and B 100 times, then evaluating
LSTM based on the value of the calculated MAPE error measure. The last, perform
hypothesis testing using ANOVA, where: Hy: u; = u, (the MAPE value of long short-term
memory D, is equal to D,) and H;: y; < u, (the MAPE value of long short-term memory D,
is smaller than D,).

2. The empirical study data analysis procedure using LSTM and M-LSTM as follows:
First, pre-process the data to tidy up the structure of the data used in the study, then explore the
data to see the visual of the data pattern in general. The third is to conduct the stationary test,
test the homogeneity of variance, see the seasonal effect of the data and divide the data into
training data and test data. Analyse the data with LSTM and M-LSTM methods, doing hypothesis
testing using ANOVA and lastly, perform forecasting and interpretation of analysis results.

3. RESULT AND DISCUSSION

Based on the research objectives, this section is divided into two studies: simulation and
empirical. The simulation study is intended to determine the performance of the approach based on data
generated with the specified scenario to examine the performance of LSTM in limited or no data and the
influence of noise. In comparison, empirical studies are carried out with the aim of actual application of
generalizations made in simulation studies where the empirical data used is data with a limited amount
and contains noise.

3.1. Simulation Study

The simulation data for this study will be generated using the following scenarios. First, the data
is generated from the functional autoregressive model with order 1 (FAR(1)) with e(k) = N(0.5,1).
Second, the data is generated from the functional autoregressive model with order 1 (FAR(1)) from the
generated data is taken 10% randomly and given noise e(k)~N (0.5, 10), which is added to the initial
data to form new data, namely FAR*(1). So, the performance of the long short-term memory method
when applied to data generated with functional autoregressive model of order 1 (FAR(1)) with e(k) =
N(0.5,1) or functional autoregressive model of order 1 (FAR(1)) with the generated data taken 10%
randomly and given noise e(k)~N (0.5, 10) which is added to the initial data to form new data, namely
FAR*(1). The first stage is to generate data using a functional autoregressive model with order 1
(FAR(1)). functional autoregressive model with order 1 (FAR(1)):

1
Vean () = j Yk, )Y, (s)ds + a1 (k)£ = 1,23, ..,n (19)
0
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Then, it will be carried out in several study scenarios as shows at Table 1.

Table 1. FAR(1) Simulation Scenarios i = 0.5

Scenario Number of functional observations

1 30
2 350
3 400 (as perin [2])
4 450

The second stage, namely the generated data that has been following each generation scenario,
will be repeated 100 times until 100 data with noise e(k)~N(0.5,1) and 100 data with 10% of the
amount of data generated is taken randomly and given noise e(k)~N (0.5, 10) which will then be used
to compare the accuracy of the long short-term memory method on data containing noise and not having
noise. In general, the data generated using the model in Table 1 with scenario 1 FAR(1) with
e(k)~N(0.5, 1) has the visualization presented in Figure. 2. By repeating 100 times in each scenario, the
data observations generated from the same model have different fluctuation ranges and are displayed
with different colors. The results of the fluctuation range of data generated by model with 400
observations show a more extended fluctuation range than data with 30, 350, and 450 observations.

i g ey g

e g

1 X % x % 10 1% » 0
Timas Times

(@) (b)

li,.mm,!d -}j UJW W ,i'l‘w ) lw}% ,'W? !vw W i M hw,llmgfl,wl IH.hM

PSRRI il

() (d)

Figure 2. Scenario 1 generation data. (a) 30 observations. (b) 350 observations. (c) 400 observations. (d) 450 observations

The second scenario for generating data in this study, namely by using the FAR (1) model of the
generated data, is taken 10% randomly and given noise e(k)~N (0.5, 10), which is added to the initial
data to form new data, namely FAR" (1), has a visualization presented in Figure 3, by repeating 100 times
in each observation scenario, the data generated from the same model has a different fluctuation range
and is displayed in a different colour. The results of the fluctuation range of data generated by model
with 450 observations show a more extended fluctuation range than data with 30, 350, and 400
observations.
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Figure 3. Scenario 2 generation data. (a) 30 observations. (b) 350 observations. (c) 400 observations. (d) 450 observations
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The generation data in Figure 2 and Figure 3 are then subjected to modelling and forecasting.
The modelling carried out is by using the long short-term memory method. The modelling results in each
data scenario are obtained by comparing the modelling accuracy based on the RMSE value. The
combination of parameters of the modelling results is carried out hypothesis testing, this test using
factorial. This test is intended to detect the RMSE value of the level of each factor (number of
observations, neurons in the hidden layer, and epoch) and the interaction between the elements.

Table 2. ANOVA p-value of modelling test results with LSTM

Source of variance Scenario 1 Scenario 2

Observation <200x 107 < 2.00x 1071
Number of neurons <2.00x 107 < 2.00x 1071

Epoch 2.78x 1078 0.879 x 107!
Interaction between observation and number of neurons <2.00x 107 < 2.00x 107
Interaction between observation and epoch <2.00x 1071% < 2.00x 10716
Interaction between number of neurons and epoch <2.00x 107'% < 2.00x 10716

Interaction between observation, number of neurons, and epoch < 2.00 x 107'¢ 3.16 x 10713

The results of hypothesis testing show that all factors and their interactions have a real
influence, which is established based on a significance level of 5%. It is known that the p — value
generated based on the analysis is < 0.05. Overall, the data model with a parameter combination of the
number of neurons in the hidden layer of 10 and the number of epochs 50 has the smallest average value
of RMSE distribution. The results of modelling carried out using two scenarios of data generation are
then carried out forecasting. The accuracy of each design is selected based on the MAPE value, where
the chosen results have been tested. The results of the hypothesis testing conducted show that all factors
and their interactions have a real influence. Furthermore, this study tested the hypothesis on the data
scenarios presented in Table 3.

Simulation and Empirical Studies of Long Short-Term Memory Performance to Deal Limited Data 222

Khusnia Nurul Khikmah!, Kusman Sadik?*, Khairil Anwar Notodiputro3


http://u.lipi.go.id/1466480524
http://u.lipi.go.id/1464049910

JOIN | Volume 10 No. 1| June 2025: 216-226

Table 3. ANOVA p-value of forecasting test results with LSTM

Source of variance Scenario 1 Scenario 2
Observation <200x 107 <200x 107¢
Number of neurons <2.00x 107 < 2.00x 107

Epoch 2.76 x 1077 0.857 x 1073

Interaction between observation and number of neurons <2.00x 107 < 2.00x 1071
Interaction between observation and epoch <2.00x 107 < 2.00x 10716
Interaction between number of neurons and epoch <2.00x 1071% < 2.00x 1071
Interaction between observation, number of neurons, and epoch < 2.00x 107¢ < 2.00x 107'¢

Table 4 shows the RMSE and MAPE values with parameter combinations in each data scenario
based on the hypothesis testing results.

Table 4. RMSE and MAPE value of forecasting test results with LSTM

Number of Neurons in Average RMSE Average MAPE

. . Epoch - - - -
observations  hidden layer Scenariol Scenario2 Scenariol Scenario 2

5 50 0.3686 0.3470 51.21 48.33

30 100 0.1573 0.1795 24.08 22.84

10 50 0.0956 0.0928 12.27 11.60

100 0.1005 0.0960 12.73 12.51

5 50 0.3735 0.4149 39.06 39.50

350 100 0.3451 0.4059 39.59 38.19

10 50 0.3432 0.3274 33.30 31.52

100 0.3445 0.3639 37.18 34.33

5 50 0.4130 0.4245 42.21 41.12

400 100 0.4017 0.4150 42.73 40.36

10 50 0.3373 0.3352 34.78 3245

100 0.3737 0.3824 38.10 35.95

5 50 0.4433 0.4388 38.05 40.84

450 100 0.4466 0.4371 39.69 41.79

10 50 0.3437 0.3366 35.39 30.45

100 0.3933 0.3937 36.83 40.69

Hypothesis testing is carried out on the data scenario. Hypothesis testing of significant
differences in forecast accuracy between data generated without noise and noise (Table 5).

Table 5. Hypothesis testing result of significant differences in forecast accuracy

Source of variance p — value Source of variance p — value
Scenario 2.72%x 107* Interaction between observation and epoch <2.00x 10716
. _ Interaction between number of neurons and _
Observation <2.00x 10716 <2.00x 1071
epoch
_16 Interaction between scenario, observation, _3
Number of neurons <2.00x 10 9.64 x 10
and number of neurons
Interaction between scenario, observation, -
Epoch 1.53x 107° 6.87 x 107*
and epoch
Interaction between scenario and 218 % 10-* Interaction between scenario, number of 927 % 10-3
observation : neurons, and epoch ’
Interaction between scenario and 6.63 % 10-2 Interaction between observation, number of < 2.00x 10-16
number of neurons : neurons, and epoch ’
Interaction between scenario and 1.25 x 10-1 Interaction between scenario, observation, 1.01 x 10-3
epoch number of neurons, and epoch
Interaction between observation <2.00x 10-16 Interaction between scenario, observation, 9.64 % 10-3

and number of neurons and number of neurons

The results of modelling and forecasting carried out using two scenarios of generated data show
that with the best parameter combination scenario, both are shown in data with the second scenario or
data developed with the FAR (1) model with 10% of the amount of data generated randomly and given
noise e(k)~N(0.5,10). Following previous research [32], the study found that the long short-term
memory method is suitable and has good accuracy for data containing noise. In addition, random
retrieval of data or sub-samples is based on previous research [33], mentioning that it can increase
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precision. Another study by [34] noted that applying sub-samples can reduce overfitting. The details of
these differences are presented in Table 6.

Table 6. Comparison results of forecasting with the best parameter combination of LSTM

Accuracy Scenariol Scenario 2 p —value
12.27 11.60 6.22x 1073

33.30 31.52 5.04 x 107*

Average MAPE 34.78 32.45 3.78 x 10~
35.39 30.45 1.93 x 107*

Furthermore, this study conducted hypothesis testing on the significant difference in forecast
accuracy between data generated without noise and with noise. Further testing is done using the Z test.
The Z test results show a substantial difference in the average MAPE of the two data with the best
parameter combination. This is known based on the test results showing that all p — values are less than
0.05. Based on hypothesis testing, it is proven that there is a significant difference in the average MAPE
of the forecasting results so that it can be obtained that the LSTM method has better performance in
scenario 2 based on Table 6 or on data with additional noise.

This study took one data in the best scenario for visualization, namely the data with the best
forecasting accuracy on data generated with the FAR (1) model with 10% of the total data generated
randomly taken and given noise e(k)~N(0.5,10) with a parameter combination of the number of

neurons in the hidden layer of 10 and epoch 50. The results of this visualization are presented in Figure
4.,

f\
[
V

Ha

Figure 4. Forecasting simulated data of 30 observations of the best parameter combination

3.2. Empirical Study

The empirical data used in this study is secondary data taken from the official website of the
Central Bureau of Statistics of six provinces in Java or 119 regencies/cities where the data used is taken
from 1980 to 2021. The data on the percentage of poverty at the district/city level is then divided into
three groups according to the poverty percentage variable, namely < q;; (q4,93); = q3, where q; =
8.085 and q; = 17.290. Furthermore, the categorized data is divided into 90 percent as training data and
10 percent as testing data, where the data used as input is Y;_,, the percentage of poverty at time t — 1.
X,,_, unemployment at time t — 1. X, | economic growth at the district/city level at time t — 1.
Meanwhile, the desired output is Y; the percentage of poverty at the regencies/cities level at time t. This
research begins with data collection, and then pre-processing of this data begins with checking for
missing data, which is handled using the mean imputation method. Next, the parameter initialization
stage is carried out to model the training data (pre-processed data). This research uses one long short-
term memory layer with 16 and 32 neurons and one dense layer. The optimizer used is adaptive moment
estimation (Adam) with an epoch of 40 and a number of batch sizes 64. [35] state that the forecasting
results generated from a long short-term memory model are influenced by the number of neuron units
that build the model. The neuron units used in model formation are selected based on the value of
multiples of 16. This study uses 16 and 32. The analysis results show that forecasting with data division,
in general, has outstanding accuracy on data with the < g, category, where the best method is M-LSTM
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with a neuron count of 16. The best accuracy results are the same as the analysis carried out in each
district and city.

Table 7. MAPE of LSTM and M-LSTM models on data divided into 3 groups
Category LSTM Neuron16 M-LSTM Neuron16 LSTM Neuron32 M-LSTM Neuron 32

<q 4.2827 4.1793 4.4156 7.4180
(91, 93) 12.2659 13.9213 40.3223 31.7204
=q; 25.8223 28.8959 35.6499 39.3727

Simulation and empirical studies carried out in this study show the same conclusion that the
LSTM method has good performance on data with a limited amount and has noise based on the MAPE
value of forecasting results and hypothesis testing conducted on testing data. The simulation studies’
results by adding noise to the generated data also show that the LSTM method has a good forecasting
MAPE value (Table 7). Following the research objectives the LSTM method is well used as a time series
data approach with a limited amount and data containing noise.

4. CONCLUSION

The results of research conducted on simulation studies, namely data generated with the
FAR(1) model, show that in determining the best parameters for generation data, both influenced by
noise and not, it is obtained that the LSTM method parameter with the number of neurons in the hidden
layer of 10 and the number of epochs of 50 is a parameter with better performance compared to other
parameter combinations that have been initiated at the beginning, where the MAPE of the forecast that
has been tested by the analysis of variance of the generation data given noise is superior to the
generation data that is not given noise, which is 1-5%. While in the empirical study, namely the use of
LSTM and M-LSTM, shows that the M-LSTM forecasting results are better than LSTM. This is indicated
by the difference in the average value of MAPE from the two models with the MAPE forecast that the
analysis of variance from M-LSTM has tested smaller by 1-10%. Empirically, the M-LSTM method is well
used to forecast the percentage of poverty in districts and cities in Java.
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