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This research is proposed to determine the performance of time series 
machine learning in the presence of noise, where this approach is 
intended to forecast time series data. The approach method chosen is 
long short-term memory (LSTM), a development of recurrent neural 
network (RNN). Another problem is the availability of data, which is not 
limited to high-dimensional data but also limited data. Therefore, this 
study tests the performance of long short-term memory using simulated 
data, where the simulated data used in this study are data generated 
from the functional autoregressive (FAR) model and data generated 
from the functional autoregressive model of order 1 FAR(1) which is 
given additional noise. Simulation results show that the long short-term 
memory method in analyzing time series data in the presence of noise 
outperforms by 1-5% the method without noise and data with limited 
observations. The best performance of the method is determined by 
testing the analysis of variance against the mean absolute percentage 
error. In addition, the empirical data used in this study are the 
percentage of poverty, unemployment, and economic growth in Java. 
The method that has the best performance in analyzing each poverty 
data is used to forecast the data. The comparison result for the empirical 
data is that the M-LSTM method outperforms the LSTM in analyzing the 
poverty percentage data. The best method performance is determined 
based on the average value of the mean absolute percentage error of 1-
10%. 
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1. INTRODUCTION 

Statistical analysis research has developed rapidly and is used in various fields. This 
development encourages researchers to find the best method or approach for various problems. One of 
the results of this approach is used in forecasting. Forecasting is one method that can help make 
decisions based on past and present data [1]. This forecasting approach is developing rapidly, ranging 
from statistical methods such as autoregressive (AR) to the latest, namely deep learning. This 
development is motivated by the various types of data and data-related problems that exist in life. One 
problem in existing data requiring a renewed study of the approach method is time series data. 

http://u.lipi.go.id/1466480524
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Time series data problems that depend on the data are on data with a limited amount and 
contain noise. The study of this problem in this research is proposed using a functional time series data 
approach using the functional time series method [2]. This approach is one of the relatively new 
statistical models with the influence of noise [3]. Functional time series is a statistical analysis method 
for time series data where the data variable underlying the analysis is a function. Time series data 
reconstructed into a function is done with the consideration that data that has become a smooth function 
allows the existence of time series data that is not stationary and is affected by the presence of noise in 
the model so that it is possible to be non-linear when generating data with the model. Based on these 
considerations, the use of models makes sense. The method in functional time series used in this study 
is functional autoregressive (FAR) [2],[3],[4].  

A recent approach whose studies need to be compared clearly and precisely to forecast this 
functional data is time series machine learning [5]. Previous research by [6] mentioned that time 
machine learning has good forecasting capabilities. One of the development approaches in machine 
learning is artificial neural networks, and the development method is long short-term memory. In 
general, the long short-term memory method was chosen in this study with the consideration that long 
short-term memory can recognize data patterns very well and can forecast time series data well, besides 
previous research [7], [8], [9] concluded that the long short-term memory (LSTM) method has good 
accuracy and forecasting results. 

Based on the described description, this research is intended to examine the advantages of 
forecasting results related to the long short-term memory method, which in previous studies was 
mentioned to be able to forecast well on high-dimensional data and data containing noise [10]. In 
addition, this research also provides a view of the actual problems and availability of data with high-
dimensional data and limited data with a deep learning approach. Therefore, this research generates 
data with various scenarios of the amount of data and noise with the long short-term memory method. 
On the other hand, poverty is one of the problems related to time series data that we often encounter in 
the socio-population field in everyday life. There are several adverse effects of poverty on people's lives 
and a country's economic situation. Therefore, this research will also compare and contrast the LSTM 
and M-LSTM approaches and apply them to classified district and city-level poverty data in Java. 
 
2. METHOD 

2.1.   Autoregressive (AR) 

Autoregressive is one of the linear prediction modelling techniques in statistics [3]. The 
autoregressive model uses a function of previous values, a particular form of time series, as a prediction. 
This value is symbolized as p, which states the number of prior values used to predict the current value. 
Suppose that 𝑌𝑡𝑖𝑡 is a stationary time series. The autoregressive model with order 𝑝 AR(𝑝) is 
mathematically defined as [11]: 

 
𝑌𝑡 = 𝜇 + 𝜙1𝑌𝑡−1 + 𝜙2𝑌𝑡−2 + ⋯ + 𝜙𝑝𝑌𝑡−𝑝 + 𝑒𝑡 (1) 

 
Where 𝜇 is an intercept constant, 𝜙i where 𝑖 = 1,2,3, … , 𝑝 are the model parameters to be 

estimated, 𝑌𝑡−𝑖 where 𝑖 = 1,2,3, … , 𝑝 are the previous time series values, and 𝑒𝑡 is the residual error 
where 𝑒𝑡 ∼ 𝑊𝑁(0, 𝜎𝑒

2). The parameters of the autoregressive model 𝜙i can be estimated using several 
techniques such as Yule-Walker ([12], least square [13], [14], maximum likelihood [15]. In 
autoregressive methods, the model chosen to be used in the analysis is strongly influenced by the lag 
selection of the partial autocorrelation function (PACF) plot, where the best model will be chosen based 
on the most significant accuracy value of the tentative model. This accuracy can be calculated, for 
example, using Akaike's information criterion (AIC) [16], [17], [18], Bayesian information criterion (BIC) 
[19], [20]. 

2.2.   Functional Data Analysis (FDA) 

Functional data analysis is one of the statistical analysis methods where the data of the variable 
underlying the study is a function [21]. This method is also a relatively new one for analysis in statistics 
[3]. It has several advantages, including being able to analyse very heterogeneous data, being able to 
forecast data better than standard forecasting methods, being able to handle data with variables that 
have varying time relationships, having relatively low errors compared to traditional forecasting 
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methods, and being able to capture data with complex patterns [22]. Functional data analysis is used to 
analyze data by assuming that each data is a single structured functional object, which can be used for 
time series data in the development of research. This data is a smooth curve that can be in the form of 
time or space. Suppose the data used is time-dependent 𝑡1 , 𝑡2 , … , 𝑡𝑛 defined as 𝑌𝑖,𝑡1

, 𝑌𝑖,𝑡2
, … , 𝑌𝑖,𝑡𝑛

, then to 

reconstruct the data into a function, one of the methods that can be used is the basis function [2]. The 
basis function is a set of special functions 𝜙i from the functional space. Suppose 𝜙i where 𝑖 = 1,2,3, … , 𝑁 
is the basis function of the functional area, then the basis expansion 𝑌𝑡(𝑘) is mathematically defined as 
follows: 

𝑌𝑡(𝑘) = ∑ 𝛼𝑖𝜙𝑖(𝑘)

𝑁

𝑖=1

 (2) 

With 𝛼𝑖 where 𝑖 = 1,2,3, … , 𝑁 are actual values of the coefficients [23]. Some of the bases that 
can be used are spline basis [24], Fourier basis [25], and wavelet basis [26]. Data reconstructed into this 
function can then be further analysed, one of which is by using functional autoregressive. 

2.3.   Functional Autoregressive (FAR) 

Functional autoregressive is one of the methods in statistics where the resulting model [2]. In 
its development, this method is widely used to analyse time series problems in various fields, such as 
energy, economics, and climate. Suppose the function 𝑌𝑡(𝑘) has a mean function 𝜇(𝑘) and covariance 
𝐶(𝑥), namely: 

𝐶(𝑥) = ∫ 𝐸(𝑌𝑡(𝜋), 𝑌𝑡(𝑘)), 𝑥(𝑘)𝑑𝑘
1

0

 (3) 

By using Mercer's theorem that the condition that a function can be a kernel function must 
produce a kernel matrix that is positive-semi-definite [27], then: 

𝐶(𝑥) = ∑ 𝜆𝑗〈𝑣𝑗 , 𝑥〉𝑣𝑗

∞

𝑗=1

, 𝑗 ∈ ℕ (4) 

Where 𝜆𝑗 is the eigenvalue in descending order and 𝑣𝑗 is the normalized eigen function. 

𝐶(𝑣𝑗) = 𝜆𝑗𝑣𝑗 (5) 

And 

‖𝑣𝑗‖ = 1 (6) 

The Karhonen-Loève theorem states that if 𝑣𝑗(𝑘) is an orthonormal basis of 𝐿2[0,1], then 
〈𝑌𝑡 − 𝜇, 𝑣𝑗〉 is the principal component functional of 𝑌𝑡(𝑘) and the value of 𝑌𝑡(𝑘) can be expressed as 

follows:  

𝑌𝑡(𝑘) = 𝜇(𝑘) + ∑〈𝑌𝑡 − 𝜇, 𝑣𝑗〉𝑣𝑗(𝑘)

∞

𝑗=1

 (7) 

The estimator of the functional time series parameter 𝑌𝑡(𝑘), 𝑡 = 1,2,3, … , 𝑛 for the mean 𝜇(𝑘) is: 

𝜇̂(𝑘) =
1

𝑛
∑ 𝑌𝑡(𝑘)

𝑛

𝑡=1

 (8) 

and the covariance 𝐶(𝑥) is: 

𝐶̂(𝑥) =
1

𝑛
∑〈𝑌𝑡(𝑘) − 𝜇̂(𝑘), 𝑥〉(𝑌𝑡(𝑘) − 𝜇̂(𝑘))

𝑛

𝑡=1

 (9) 

where 𝑥 ∈ 𝐻. Thus, the functional autoregressive model with order 𝑝 (FAR(𝑝)) is defined as follows: 

𝑌𝑡(𝑘) − 𝜇(𝑘) = ∑ 𝜓𝑖

𝑝

𝑖=1

(𝑌𝑡−𝑖(𝑘) − 𝜇(𝑘)) + 𝑒𝑡(𝑘) (10) 

where 𝜓𝑖  is a bounded linear operator where 𝜓i: 𝐻 → 𝐻, 𝑌𝑡−𝑖 is the 𝑖-th lag of the 𝑌𝑡  curve, and 𝑒𝑡(𝑘) is 
white noise with mean equal to 0 and 𝑒𝑡(𝑘) ∈ 𝐿𝐻

2  [2]. 

http://u.lipi.go.id/1466480524
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2.4.   Long Short-Term Memory (LSTM) 

One of the statistical machine-learning forecasting techniques, long short-term memory 
(LSTM), is derived from recurrent neural networks (RNN) [5]. This method frequently studies time 
series data problems in various sectors, including health, economics, and climate, because it provides 
better forecasts than typical time series prediction methods. The system's long short-term memory 
(LSTM) features a multi-layered architectural design. The top layer is the input layer, followed by the 
hidden layer and the output layer. This long short-term memory (LSTM) has one memory cell in the 
buried layer, but several gates are included within one memory cell. Figure 1 depicts the long short-term 
memory's (LSTM) overall architecture. 

 
Figure 1. General architecture of long short-term memory (LSTM) based on [28]. 

 
The input gate is a gate that accepts both fresh inputs and prior outputs. The gate in this 

procedure returns a value of 0 or 1. Assume that the input value 𝑖𝑛𝑡 is specified as follows: 
𝑖𝑛𝑡 = 𝜎(𝑊𝑖𝑌𝑡 + 𝑊𝑖ℎ𝑡−1 + 𝑏𝑖) (11) 

 
Suppose the memory cell's potential value, designated as 𝐶𝑡̅, is as follows: 

𝐶𝑡̅ = tanh(𝑊𝑐𝑌𝑡 + 𝑊𝑐ℎ𝑡−1 + 𝑏𝑐) (12) 
 
Where ℎ𝑡−1 is the state at time 𝑡 − 1, 𝑏 is the bias, and 𝑊 is the input gate weight. The forget 

gate utilizes an activation function, receiving input at time 𝑡 and output at time 𝑡 − 1. Assume that the 
forget gate 𝑓𝑡 is defined as follows: 

𝑓𝑡 = 𝜎(𝑊𝑓𝑌𝑡 + 𝑊𝑓ℎ𝑡−1 + 𝑏𝑓) (13) 

 
As a result, if the symbol 𝐶𝑡 represents the updated memory cell's state, then: 

𝐶𝑡 = 𝑖𝑛𝑡 ∗ 𝐶𝑡̅ + 𝑓𝑡 ∗ 𝐶𝑡−1 (14) 
 
The gate that regulates how many states travel through this gate is the output gate. Let 𝑜𝑡 

represent the output gate's value, which is specified as follows: 
𝑜𝑢𝑡𝑡 = 𝜎(𝑊𝑜𝑌𝑡 + 𝑊𝑜ℎ𝑡−1 + 𝑉𝑜𝐶𝑡 + 𝑏𝑜) (15) 

 
If ℎ𝑡  is the cell's ultimate output value, then: 

ℎ𝑡 = 𝑜𝑢𝑡𝑡 ∗ tanh(𝐶𝑡) (16) 
 
The output gate value is 𝑜𝑢𝑡𝑡 , and the updated memory cell state is 𝐶𝑡 [5], [6]. Additionally, the 

sigmoid and tanh activation functions are methodically defined as follows: 

𝜎 =
1

1 + 𝑒−𝑥
 (17) 

 
tanh(𝑥) = 2𝜎(2𝑥) − 1 (18) 

 
Where 𝑥 is the input data, sigmoid activation function value, 𝑡𝑎𝑛ℎ activation function value, and 

exponential value 𝑒 are all present [29]. Each layer's output is produced in long short-term memory 
using the activation function itself. 
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2.5.  Multiple-Long Short-Term Memory (M-LSTM) 

Multiple long short-term memory (M-LSTM) is a statistical machine learning prediction 
approach that is an upgraded long short-term memory method that uses multivariate input. In general, 
the multiple long short-term memory approach has the same architecture as long short-term memory, 
with the obvious distinction being the variable input component [30], [31]. 

2.6.   Analysis Procedure 

1. The following analysis steps for simulation study with LSTM are broadly divided into three 
stages, namely: 
a. Generating data, first determining the number of observations and parameter values of 

simulation data to be generated according to the scenario, then generate data with FAR(1) 
with two predetermined scenarios (𝐷1: 𝐹𝐴𝑅(1) with 𝑒(𝑘)~𝑁(0.5, 1) and 𝐷2: 𝐹𝐴𝑅(1) from 
the generated data is taken 10% randomly and given noise 𝑒(𝑘)~𝑁(0.5,  10), which is 
added to the initial data to form new data, namely 𝐹𝐴𝑅∗(1)). Third, divide the data into 
training data and testing data. 

b. Modelling and forecasting by using the LSTM to the generated training data, then doing 
forecasting and calculating accuracy 

c. Model performance evaluation, first repeating steps A and B 100 times, then evaluating 
LSTM based on the value of the calculated MAPE error measure. The last, perform 
hypothesis testing using ANOVA, where: 𝐻0: 𝜇1 = 𝜇2 (the MAPE value of long short-term 
memory 𝐷1 is equal to 𝐷2) and 𝐻1: 𝜇1 < 𝜇2 (the MAPE value of long short-term memory 𝐷1 
is smaller than 𝐷2). 

 
2. The empirical study data analysis procedure using LSTM and M-LSTM as follows: 

First, pre-process the data to tidy up the structure of the data used in the study, then explore the 
data to see the visual of the data pattern in general. The third is to conduct the stationary test, 
test the homogeneity of variance, see the seasonal effect of the data and divide the data into 
training data and test data. Analyse the data with LSTM and M-LSTM methods, doing hypothesis 
testing using ANOVA and lastly, perform forecasting and interpretation of analysis results. 

  
3. RESULT AND DISCUSSION 

Based on the research objectives, this section is divided into two studies: simulation and 
empirical. The simulation study is intended to determine the performance of the approach based on data 
generated with the specified scenario to examine the performance of LSTM in limited or no data and the 
influence of noise. In comparison, empirical studies are carried out with the aim of actual application of 
generalizations made in simulation studies where the empirical data used is data with a limited amount 
and contains noise. 

3.1.   Simulation Study 

The simulation data for this study will be generated using the following scenarios. First, the data 
is generated from the functional autoregressive model with order 1 (𝐹𝐴𝑅(1)) with 𝑒(𝑘) = 𝑁(0.5, 1). 
Second, the data is generated from the functional autoregressive model with order 1 (𝐹𝐴𝑅(1)) from the 
generated data is taken 10% randomly and given noise 𝑒(𝑘)~𝑁(0.5,  10), which is added to the initial 
data to form new data, namely 𝐹𝐴𝑅∗(1). So, the performance of the long short-term memory method 
when applied to data generated with functional autoregressive model of order 1 (𝐹𝐴𝑅(1)) with 𝑒(𝑘) =
𝑁(0.5, 1) or functional autoregressive model of order 1 (𝐹𝐴𝑅(1)) with the generated data taken 10% 
randomly and given noise 𝑒(𝑘)~𝑁(0.5,  10) which is added to the initial data to form new data, namely 
𝐹𝐴𝑅∗(1). The first stage is to generate data using a functional autoregressive model with order 1 
(𝐹𝐴𝑅(1)).  functional autoregressive model with order 1 (𝐹𝐴𝑅(1)): 

 

𝑌𝑡+1(𝑘) = ∫ 𝜓(𝑘, 𝑠)𝑌𝑡(𝑠)𝑑𝑠 + 𝑒𝑡+1(𝑘)
1

0

, 𝑡 = 1,2,3, … , 𝑛 
(19) 

http://u.lipi.go.id/1466480524
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Then, it will be carried out in several study scenarios as shows at Table 1. 

 

Table 1. 𝐹𝐴𝑅(1) Simulation Scenarios 𝜓 = 0.5 

Scenario Number of functional observations 

1 30 
2 350 
3 400 (as per in [2]) 
4 450 

 
The second stage, namely the generated data that has been following each generation scenario, 

will be repeated 100 times until 100 data with noise 𝑒(𝑘)~𝑁(0.5, 1) and 100 data with 10% of the 
amount of data generated is taken randomly and given noise 𝑒(𝑘)~𝑁(0.5, 10) which will then be used 
to compare the accuracy of the long short-term memory method on data containing noise and not having 
noise. In general, the data generated using the model in Table 1 with scenario 1 𝐹𝐴𝑅(1) with 
𝑒(𝑘)~𝑁(0.5, 1) has the visualization presented in Figure. 2. By repeating 100 times in each scenario, the 
data observations generated from the same model have different fluctuation ranges and are displayed 
with different colors. The results of the fluctuation range of data generated by model with 400 
observations show a more extended fluctuation range than data with 30, 350, and 450 observations. 

 

  
(a) (b) 

  
(c) (d) 

Figure 2. Scenario 1 generation data. (a) 30 observations. (b) 350 observations. (c) 400 observations. (d) 450 observations 

 
The second scenario for generating data in this study, namely by using the 𝐹𝐴𝑅(1) model of the 

generated data, is taken 10% randomly and given noise 𝑒(𝑘)~𝑁(0.5,  10), which is added to the initial 
data to form new data, namely 𝐹𝐴𝑅∗(1), has a visualization presented in Figure 3, by repeating 100 times 
in each observation scenario, the data generated from the same model has a different fluctuation range 
and is displayed in a different colour. The results of the fluctuation range of data generated by model 
with 450 observations show a more extended fluctuation range than data with 30, 350, and 400 
observations.  
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(a) (b) 

 
  

(c) (d) 

Figure 3. Scenario 2 generation data. (a) 30 observations. (b) 350 observations. (c) 400 observations. (d) 450 observations  

 
The generation data in Figure 2 and Figure 3 are then subjected to modelling and forecasting. 

The modelling carried out is by using the long short-term memory method. The modelling results in each 
data scenario are obtained by comparing the modelling accuracy based on the RMSE value. The 
combination of parameters of the modelling results is carried out hypothesis testing, this test using 
factorial. This test is intended to detect the RMSE value of the level of each factor (number of 
observations, neurons in the hidden layer, and epoch) and the interaction between the elements. 

Table 2. ANOVA p-value of modelling test results with LSTM 

Source of variance Scenario 1 Scenario 2 

Observation < 2.00 × 10−16 < 2.00 × 10−16 
Number of neurons < 2.00 × 10−16 < 2.00 × 10−16 

Epoch 2.78 × 10−8 0.879 × 10−1 
Interaction between observation and number of neurons < 2.00 × 10−16 < 2.00 × 10−16 

Interaction between observation and epoch < 2.00 × 10−16 < 2.00 × 10−16 
Interaction between number of neurons and epoch < 2.00 × 10−16 < 2.00 × 10−16 

Interaction between observation, number of neurons, and epoch < 2.00 × 10−16 3.16 ×  10−13 

 
The results of hypothesis testing show that all factors and their interactions have a real 

influence, which is established based on a significance level of 5%. It is known that the 𝑝 − 𝑣𝑎𝑙𝑢𝑒 
generated based on the analysis is < 0.05. Overall, the data model with a parameter combination of the 
number of neurons in the hidden layer of 10 and the number of epochs 50 has the smallest average value 
of RMSE distribution. The results of modelling carried out using two scenarios of data generation are 
then carried out forecasting. The accuracy of each design is selected based on the MAPE value, where 
the chosen results have been tested. The results of the hypothesis testing conducted show that all factors 
and their interactions have a real influence. Furthermore, this study tested the hypothesis on the data 
scenarios presented in Table 3. 
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Table 3. ANOVA p-value of forecasting test results with LSTM 

Source of variance Scenario 1 Scenario 2 

Observation < 2.00 × 10−16 < 2.00 × 10−16 
Number of neurons < 2.00 × 10−16 < 2.00 × 10−16 

Epoch 2.76 × 10−7 0.857 × 10−3 
Interaction between observation and number of neurons < 2.00 × 10−16 < 2.00 × 10−16 

Interaction between observation and epoch < 2.00 × 10−16 < 2.00 × 10−16 
Interaction between number of neurons and epoch < 2.00 × 10−16 < 2.00 × 10−16 

Interaction between observation, number of neurons, and epoch < 2.00 × 10−16 < 2.00 × 10−16 

 
Table 4 shows the RMSE and MAPE values with parameter combinations in each data scenario 

based on the hypothesis testing results. 

Table 4. RMSE and MAPE value of forecasting test results with LSTM 

Number of 
observations 

Neurons in 
hidden layer 

Epoch 
Average RMSE Average MAPE 

Scenario 1 Scenario 2 Scenario 1 Scenario 2 

30 
5 

50 0.3686 0.3470 51.21 48.33 
100 0.1573 0.1795 24.08 22.84 

10 
50 0.0956 0.0928 12.27 11.60 

100 0.1005 0.0960 12.73 12.51 

350 
5 

50 0.3735 0.4149 39.06 39.50 
100 0.3451 0.4059 39.59 38.19 

10 
50 0.3432 0.3274 33.30 31.52 

100 0.3445 0.3639 37.18 34.33 

400 
5 

50 0.4130 0.4245 42.21 41.12 
100 0.4017 0.4150 42.73 40.36 

10 
50 0.3373 0.3352 34.78 32.45 

100 0.3737 0.3824 38.10 35.95 

450 
5 

50 0.4433 0.4388 38.05 40.84 
100 0.4466 0.4371 39.69 41.79 

10 
50 0.3437 0.3366 35.39 30.45 

100 0.3933 0.3937 36.83 40.69 

 
Hypothesis testing is carried out on the data scenario. Hypothesis testing of significant 

differences in forecast accuracy between data generated without noise and noise (Table 5).  

Table 5. Hypothesis testing result of significant differences in forecast accuracy 

Source of variance 𝒑 − 𝒗𝒂𝒍𝒖𝒆 Source of variance 𝒑 − 𝒗𝒂𝒍𝒖𝒆 

Scenario 2.72 × 10−4 Interaction between observation and epoch < 2.00 ×  10−16 

Observation < 2.00 × 10−16 
Interaction between number of neurons and 

epoch 
< 2.00 ×  10−16 

Number of neurons < 2.00 × 10−16 
Interaction between scenario, observation, 

and number of neurons 
9.64 × 10−3 

Epoch 1.53 × 10−9 
Interaction between scenario, observation, 

and epoch 
6.87 × 10−4 

Interaction between scenario and 
observation 

2.18 × 10−4 
Interaction between scenario, number of 

neurons, and epoch 
9.27 × 10−3 

Interaction between scenario and 
number of neurons 

6.63 × 10−2 
Interaction between observation, number of 

neurons, and epoch 
< 2.00 ×  10−16 

Interaction between scenario and 
epoch 

1.25 × 10−1 
Interaction between scenario, observation, 

number of neurons, and epoch 
1.01 × 10−3 

Interaction between observation 
and number of neurons 

< 2.00 × 10−16 
Interaction between scenario, observation, 

and number of neurons 
9.64 × 10−3 

 
The results of modelling and forecasting carried out using two scenarios of generated data show 

that with the best parameter combination scenario, both are shown in data with the second scenario or 
data developed with the 𝐹𝐴𝑅(1) model with 10% of the amount of data generated randomly and given 
noise 𝑒(𝑘)~𝑁(0.5, 10). Following previous research [32], the study found that the long short-term 
memory method is suitable and has good accuracy for data containing noise. In addition, random 
retrieval of data or sub-samples is based on previous research [33], mentioning that it can increase 
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precision. Another study by [34] noted that applying sub-samples can reduce overfitting. The details of 
these differences are presented in Table 6. 

Table 6. Comparison results of forecasting with the best parameter combination of LSTM 

Accuracy Scenario 1 Scenario 2 𝒑 − 𝒗𝒂𝒍𝒖𝒆 

Average MAPE 

12.27 11.60 6.22 × 10−3 
33.30 31.52 5.04 × 10−4 
34.78 32.45 3.78 × 10−4 
35.39 30.45 1.93 × 10−4 

 
Furthermore, this study conducted hypothesis testing on the significant difference in forecast 

accuracy between data generated without noise and with noise. Further testing is done using the Z test. 
The Z test results show a substantial difference in the average MAPE of the two data with the best 
parameter combination. This is known based on the test results showing that all 𝑝 − 𝑣𝑎𝑙𝑢𝑒𝑠 are less than 
0.05. Based on hypothesis testing, it is proven that there is a significant difference in the average MAPE 
of the forecasting results so that it can be obtained that the LSTM method has better performance in 
scenario 2 based on Table 6 or on data with additional noise. 

This study took one data in the best scenario for visualization, namely the data with the best 
forecasting accuracy on data generated with the 𝐹𝐴𝑅(1) model with 10% of the total data generated 
randomly taken and given noise 𝑒(𝑘)~𝑁(0.5, 10) with a parameter combination of the number of 
neurons in the hidden layer of 10 and epoch 50. The results of this visualization are presented in Figure 
4. 

 

 
Figure 4. Forecasting simulated data of 30 observations of the best parameter combination 

3.2.   Empirical Study 

The empirical data used in this study is secondary data taken from the official website of the 
Central Bureau of Statistics of six provinces in Java or 119 regencies/cities where the data used is taken 
from 1980 to 2021. The data on the percentage of poverty at the district/city level is then divided into 
three groups according to the poverty percentage variable, namely ≤ 𝑞1; (𝑞1, 𝑞3); ≥ 𝑞3, where 𝑞1 =
8.085 and 𝑞3 = 17.290. Furthermore, the categorized data is divided into 90 percent as training data and 
10 percent as testing data, where the data used as input is 𝑌𝑡−1, the percentage of poverty at time 𝑡 − 1. 
𝑋1𝑡−1

 unemployment at time 𝑡 − 1. 𝑋2𝑡−1
 economic growth at the district/city level at time 𝑡 − 1. 

Meanwhile, the desired output is 𝑌𝑡  the percentage of poverty at the regencies/cities level at time 𝑡. This 
research begins with data collection, and then pre-processing of this data begins with checking for 
missing data, which is handled using the mean imputation method. Next, the parameter initialization 
stage is carried out to model the training data (pre-processed data). This research uses one long short-
term memory layer with 16 and 32 neurons and one dense layer. The optimizer used is adaptive moment 
estimation (Adam) with an epoch of 40 and a number of batch sizes 64. [35] state that the forecasting 
results generated from a long short-term memory model are influenced by the number of neuron units 
that build the model. The neuron units used in model formation are selected based on the value of 
multiples of 16. This study uses 16 and 32. The analysis results show that forecasting with data division, 
in general, has outstanding accuracy on data with the ≤ 𝑞1 category, where the best method is M-LSTM 

http://u.lipi.go.id/1466480524
http://u.lipi.go.id/1464049910
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with a neuron count of 16. The best accuracy results are the same as the analysis carried out in each 
district and city. 

Table 7. MAPE of LSTM and M-LSTM models on data divided into 3 groups 

Category LSTM Neuron 16 M-LSTM Neuron 16 LSTM Neuron 32 M-LSTM Neuron 32 

≤ 𝑞1  4.2827 4.1793 4.4156 7.4180 
(𝑞1 , 𝑞3) 12.2659 13.9213 40.3223 31.7204 

≥ 𝑞3  25.8223 28.8959 35.6499 39.3727 

 
Simulation and empirical studies carried out in this study show the same conclusion that the 

LSTM method has good performance on data with a limited amount and has noise based on the MAPE 
value of forecasting results and hypothesis testing conducted on testing data. The simulation studies' 
results by adding noise to the generated data also show that the LSTM method has a good forecasting 
MAPE value (Table 7). Following the research objectives the LSTM method is well used as a time series 
data approach with a limited amount and data containing noise. 

 
4. CONCLUSION 

The results of research conducted on simulation studies, namely data generated with the 
𝐹𝐴𝑅(1) model, show that in determining the best parameters for generation data, both influenced by 
noise and not, it is obtained that the LSTM method parameter with the number of neurons in the hidden 
layer of 10 and the number of epochs of 50 is a parameter with better performance compared to other 
parameter combinations that have been initiated at the beginning, where the MAPE of the forecast that 
has been tested by the analysis of variance of the generation data given noise is superior to the 
generation data that is not given noise, which is 1-5%. While in the empirical study, namely the use of 
LSTM and M-LSTM, shows that the M-LSTM forecasting results are better than LSTM. This is indicated 
by the difference in the average value of MAPE from the two models with the MAPE forecast that the 
analysis of variance from M-LSTM has tested smaller by 1-10%. Empirically, the M-LSTM method is well 
used to forecast the percentage of poverty in districts and cities in Java. 
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