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This study examines the potential of quantum machine learning (QML) 
to predict the corrosion inhibition capacity of expired pharmaceutical 
compounds. The investigation employs a QSPR model, using features 
generated from density functional theory (DFT) calculations as input. At 
the same time, corrosion inhibition efficiency (CIE) values obtained 
from experimental data serve as the target output. The VQC model 
demonstrates varied performance across evaluation metrics, especially 
with encoding and ansatz design. The model achieves fine scores in 
evaluation metrics, with root mean square error (RMSE) of 6.15, mean 
absolute error (MAE) of 5.63, and mean absolute deviation (MAD) of 
5.50. The research underscores the significance of larger datasets for 
enhancing predictive accuracy and points to QML's potential in 
exploring anti-corrosion materials. Although there are some limitations, 
this study provides a foundational framework for using QML to predict 
anti-corrosive properties. 
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1. INTRODUCTION 

Corrosion is a process that causes damage to metals due to the electrochemical interaction 
between the metal surface and its corrosive environment [1], [2]. Gradually, corrosion reduces the 
lifespan of materials, potentially shortening their expected service life. The global damage caused by 
corrosion reached at least $2.5 trillion, equivalent to 3.4% of the worldwide GDP in 2013, making 
mitigating corrosion effects a critical priority. It is estimated that 15-35% of these losses could be 
prevented by applying corrosion inhibitors [3]. Utilizing corrosion inhibition is highly effective in 
preventing corrosion. Corrosion inhibitors typically consist of organic compounds containing 
heteroatoms such as nitrogen (N), phosphorus (P), sulfur (S), arsenic (As), or oxygen (O) within their 
molecular structure because these compounds possess free electrons or π electrons on aromatic rings 
or double bonds, allowing for strong interactions between metal atoms and organic molecules to form a 
protective layer on the metal surface. This layer is absorbed at the interface of the corrosive solution due 
to structural similarities, leading to numerous compounds being tested as corrosion inhibitors [4], [5], 
[6]. 

Currently, materials informatics is gaining popularity due to the widespread development of 
technologies such as Machine Learning (ML), particularly in the design and development of new 
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materials [7], [8], [9]. The ML approach based on the Quantitative Structure-Property Relationship 
(QSPR) model is frequently employed to evaluate the performance of compounds because molecular 
attributes can be measured and related to the chemical structure of these compounds [3], [10], [11]. This 
approach replaces costly, time-consuming experimental procedures that require significant resources 
[12], [13], [14]. The ML approach to QSPR targets the Corrosion Inhibition Efficiency (CIE) derived from 
experimental results and utilizes Quantum Chemical Properties (QCP) obtained from Density Functional 
Theory (DFT) calculations as input [15]. 

Research such as that by Quadri et al. [16] utilized Artificial Neural Networks (ANN) and Multi 
Linear Regression (MLR) to design corrosion inhibitors based on pyridazine compounds, revealing that 
ANN produced optimal results for predicting Corrosion Inhibition Efficiency (CIE). Similarly, Akrom et 
al. [17] achieved accurate predictions for the CIE of diazine compounds as corrosion inhibitors, with 
predictions ranging from 85.2% to 94.99%. Almari et al. [18] also reported promising results in 
predicting corrosion inhibition for pyrimidine compounds using Partial Least Squares (PLS) and 
Random Forest (RF), with RF yielding more accurate predictions compared to PLS. Pham et al. [19] 
concluded a parallel investigation employing Gradient Boosting (GB) focused on expired drugs, where 
the model generated a Root Mean Square Error (RMSE) of 6.40. A similar focus was carried out by Perez 
et al. [3], who proposed a model with Autoregressive Exogenous Input (ARX), utilizing CML methods to 
identify corrosion inhibition compounds in expired drugs. 

Although CML has provided significant insights into structure-property correlations, there is a 
strong case for exploring Quantum Machine Learning (QML) approaches as a complementary pathway. 
Features extracted from DFT, which describe the quantum properties of molecules in Hilbert space, can 
enhance our understanding of molecular structures, quantum characteristics, and atomic interactions, 
thereby strengthening this initiative [20], [21]. The application of QML in generative and discriminative 
models has shown promising potential. Examples include unsupervised learning in finance, kernel 
techniques for support vector machines, and binary classification problems in image recognition [22], 
[23]. Akrom et al. [24] developed a Quantum Neural Network (QNN) model to investigate organic 
pyrimidine compounds as corrosion inhibitors in the context of corrosion inhibitor design. The results 
indicated that the proposed model delivered good predictive performance. In another study, Akrom et 
al. [25] also proposed a Variational Quantum Circuit (VQC) model to predict the corrosion inhibition 
efficiency of hybrid pyridine-quinoline compounds. Both models leveraged features derived from 
quantum phenomena obtained through DFT calculations in these modeling efforts. 

Therefore, this article's main objective is to introduce the QML paradigm for estimating the 
Corrosion Inhibition Efficiency (CIE) of expired drugs. It also aims to highlight the novel applications of 
the VQC method in this field and explain how this method can be utilized to design corrosion inhibition 
compounds. 
 
2. METHODS 

In this study, we developed and assessed a comparison of QML models utilizing Variational 
Quantum Circuits (VQC) to predict the corrosion inhibition capabilities of expired pharmaceutical 
compounds. Figure 1 depicts the framework of the constructed QML model, with a comprehensive 
explanation provided in Sections 2.1 to 2.8. 
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Figure 1. Research Flow Frameworks 

2.1.   Dataset Reconstruction 

 In this experiment, we utilized and restructured the dataset from the published study [3], [19]. 
The dataset includes 260 expired drugs identified as corrosion inhibitors. It contains two attributes: 
chemical property features and the Corrosion Inhibition Efficiency (CIE) value. The chemical property 
features encompass HOMO energy (eV), LUMO energy (eV), ionization potential (I) (eV), electron affinity 
(A) (eV), electronegativity (χ) (eV), electrophilicity (ω), global hardness (η) (eV), global softness (s) (eV), 
molecular weight (MW) (g/mol), polar surface area (PSA) (Å²), polarizability (Å³), acid dissociation 
constant (pKa), octanol-water partition coefficient (log P), water solubility (log S), the fraction of shared 
electrons (ΔN) and the CIE value is provided as the output [26], [27], [28] dataset depicted on Figure 2.  

 
Figure 2. The model uses fifteen chemical property features as inputs and one target output, the CIE (%) value. 

2.2.   Exploratory Data Analysis (EDA) 

The pre-processing phase, which includes Exploratory Data Analysis (EDA), is the initial and 
essential step in data-driven analysis methodologies. This phase addresses various challenges within the 
dataset, such as managing missing values, detecting anomalies, evaluating features with high correlation 
or low variance, identifying duplicate entries, recognizing skewed data distributions, establishing 
correlations between features and targets, and performing descriptive statistical analyses. These actions 
enhance understanding of data distribution, variability, and central tendencies. Insights gained from 
EDA clarify the key assumptions that inform model development and offer valuable guidance for 
improving subsequent data processing stages [29], [30]. Ultimately, EDA is a vital tool for navigating the 
complexities of datasets and supporting informed decision-making throughout the analytical process. 
The results of the EDA indicate a significant presence of missing values in the dataset, especially 
concerning the target variable. Only 80 clean data points were retained from the original 260 to address 
this issue. The remaining data points will be used in the modeling phase. 

2.3.   Normalization 

 Feature scaling methods are crucial for normalizing data, especially in large or heterogeneously 
scaled datasets, as they can significantly enhance model accuracy by reducing prediction errors [31], 
[32], [33]. The application of Robust Scaler in data preparation is significant because it can effectively 
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manage outliers in the dataset, which are data points that markedly differ from the majority. This scaling 
technique scales the data using the interquartile range (Q3 - Q1). Its robustness against outliers stems 
from normalizing the data using the middle 50% of the distribution before scaling. This approach 
minimizes the sensitivity of the scaling process by emphasizing the more representative central data 
distribution and diminishing the influence of extreme values. 

𝑋𝑠𝑐𝑎𝑙𝑒𝑑 =
𝑋−𝑄1

𝑄3−𝑄1
 (1) 

In Equation 1, the initial value of a ata point is denote by the leter X.oneThe fitheisubscriptQbase1) of 
the fethreeture data coresponds to the 25th percentile, while the third quartile (Q3) represents the 75th 
percentile. 

2.4.   PCA 

In this research, PCA is utilized to simplify the dimensions of both features and quantum circuits, 
enabling the characterization of datasets in a more concise form while retaining a substantial amount of 
the critical information from the original features [24], [34]. This technique enables the representation 
of datasets in a simplified form with reduced dimensions while retaining much of the key information 
from the original features. After applying PCA, the dataset was reduced to just 6 features from the 
original 15. 

2.5.   Basic Quantum Computing 

 Quantum computing is an innovative computing paradigm rooted in the principles of quantum 
physics, primarily utilizing entanglement and superposition. In quantum computation, information is 
represented similarly to how elementary particles and photons are modeled in traditional quantum 
mechanics, displaying both wave and particle properties. The fundamental unit of quantum information, 
the quantum bit (qubit), enables computations that are exceedingly challenging, if not nearly impossible, 
to achieve on traditional computers [35], [36], [37]. Quantum computers differ from classical computers 
in using qubits instead of bits. Unlike classical bits, which encode information strictly as 0 or 1 at any 
given time, qubits can represent these classical states (0 and 1) or exist in a superposition, 
simultaneously holding a combination of both states. This unique characteristic allows quantum 
computers to perform complex computations and explore multiple possibilities at once. The use of 
qubits necessitates a shift in data encoding and storage methods due to this superposition property, is 
defined neatly in Equation 2.  
|𝜓⟩ = 𝛼|0⟩ + 𝛽|1⟩ (2) 

In a two-dimensional complex Hilbert space with basis vectors ∣0⟩and ∣1⟩, the state of a qubit is 
represented as ∣ψ⟩ The complex coefficients α\alphaα and β indicate the degree to which the qubit is in 
a superposition of the states ∣0⟩and ∣1⟩. The likelihood of the qubit being in each state is given by the 
squared magnitudes ∣α∣2and ∣β∣2, respectively. To ensure the conservation of total probability, a crucial 
requirement called normalization mandates that ∣α∣2+∣β∣2=1. This principle guarantees that the total 
probability of all possible qubit states sums to one, a foundational concept in quantum mechanics. 
Because α and β are complex, the qubit can exist in a complex superposition of states, allowing it to 
represent multiple values simultaneously through the principle of superposition. Leveraging qubit 
dependency, quantum computers can process large datasets more efficiently and tackle specific 
problems faster than classical systems [38], [39]. A fundamental concept in quantum computing is 
entanglement, which describes the interconnected states of multiple qubits, irrespective of the physical 
distance between them. This effect creates a dependency between the states of two qubits, highlighting 
their interconnected behavior.  Utilizing this relationship allows quantum computers to manage large 
datasets more efficiently and solve specific problems faster than classical computers [38], [40].  

Quantum circuits are composed of quantum gates that facilitate qubit manipulation during 
computations. The Hadamard (H) gate is essential, as it places qubits into a superposition state. When 

applied to qubits |0⟩ or |1⟩, the H gate transforms their states to 
1

√2
(|0⟩ + |1⟩) and 

1

√2
(|0⟩ − |1⟩), 

respectively. For an n-qubit system, the combined state is represented by the tensor product of n single-
qubit states, creating a superposition of 2n basis states that includes every possible classical combination 
from |00…00⟩ to 11…11⟩ [41], [42]. Additionally, controlled-NOT (CNOT or CX) gates are frequently 
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used to generate entanglement between qubits, using one qubit as a control to determine if a NOT 
operation should be applied to the target qubit [42], [43].  Quantum circuits, formed by combining 
various quantum gates, are essential for quantum computing and information processing [44], [45]. 

2.6.   QML Architecture and VQC Model 

 
Figure 3. General architecture of QML 

The primary distinction between quantum and classical computing lies in quantum systems’ 
ability to leverage unique properties like superposition and qubit entanglement during computations 
[46], [47], [48]. Figure 3 presents the three core components of the QML architecture. The initial 
component, quantum feature mapping, functions as an input encoding technique that transforms 
classical data into quantum states within the Hilbert space, placing qubits into superposition states [49], 
[50]. As shown in Equation 3., the encoding 𝐄(𝒙⃗⃗ )is applied to the ground state |𝟎⟩ of each qubit, allowing 
the classical input vector 𝒙⃗⃗  to be encoded as a quantum state vector |𝝍(𝒙⃗⃗ )⟩ for each observation. Each 
classical feature essentially corresponds to a mapping on a single qubit. 

Equation 4. illustrates that the second component, known as the ansatz, 𝐀(𝜽) utilizes flexible 
parameters (θ) to dynamically evolve the quantum states |𝝍(𝜽, 𝒙⃗⃗ )⟩within the system, which can be 
expanded to n layers of circuits, typically incorporating CX gates and rotation gates at each layer. This 
parametrized circuit layout is particularly advantageous for tackling the problem, as its circuit depth 
increases linearly with the number of qubits. The ansatz serves as a foundational circuit framework 
where gates operate on designated subsystems, acting as an initial hypothesis for a training structure 
[51]. It offers a basic structure or format with adjustable variables, such as gate parameters (often 
angles), which can be fine-tuned through an optimization process [52]. The ansatz can be categorized 
into two primary types: the first aims to simplify the circuit to minimize quantum hardware 
computation. In contrast, the second seeks to identify the optimal ansatz for maximum performance on 
a specific task without reducing computation [25], [53]. 

The final component of the QML architecture involves determining the outcome, signifying the 
completion of circuit operations. The developed quantum states are measured to produce measurement 
results, denoted by the letter m. Subsequently, a classical computer performs additional post-processing 
on these results by decoding and extracting the output y as the function f(m). This decoding process is 
the concluding step in the QML framework, finalizing the regression task and providing the ultimate 
output [25]. A loss function is computed by comparing the predicted values from the model with the 
target data, assessing how closely each sample's target values match the predictive model. Once the loss 
function is established, the next step in the model optimization process is to minimize this loss [54], [55]. 

 
E(𝑥 )|0⟩ = |𝜓(𝑥 )⟩ (3) 
|𝜓(𝜃, 𝑥 )⟩ = A(𝜃)E(𝑥 )|0⟩ (4) 
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2.7.  QML Architecture and VQC Model 

 
Figure 4. The structure of proposed VQC models VQC-1 (ZZFeatureMap as input encoding and RealAMplitudes as ansatz) 

 
Figure 5. The structure of proposed VQC models (VQC-2 (PauliFeatureMap as input encoding and EfficientSU2 as ansatz) 

 
Figure 6. The structure of proposed VQC models VQC-3 (ZZFeatureMap as input encoding and TwoLocal as ansat 

 
Hyperparameter tuning is employed to identify the best parameters for each model, enhancing 

its overall performance [56], [57]. Parameter optimization is important to improve model accuracy [58], 
[59]. As previously noted, this study developed VQC models. The effectiveness of all three models was 
evaluated in predicting the Chemical Information Encoding (CIE) of expired pharmaceutical compounds. 
the experiment involved 6 VQC models resulting from input encoding and ansatz. The input encoding 
techniques used are PauliFeatureMap and ZZFeatureMap, while the ansatz are RealAmplitudes, 
EfficientSU2, and TwoLocal, as depicted in Figure 3-5. These feature mapping parameters effectively 
convert classical data into more informative quantum representations, facilitating the search for optimal 
data encoding. In VQC classification tasks, quantum circuit-based variational parameters like 
RealAmplitudes, EfficientSU2, and TwoLocal are employed to determine the most suitable ansatz 
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structure for analyzing incoming data. By evaluating the similarity between data pairs in the quantum 
feature space, optimizing the encoding parameters and ansatz effectively addresses data classification 
challenges. It enhances the model's ability to learn and categorize data. Additionally, post-quantum 
parameterization involves optimization techniques aimed at minimizing the loss function, utilizing 
various methods such as analytic quantum gradient descent (AQGD), constrained optimization by linear 
approximations (COBYLA), and adaptive moment estimation (ADAM). Quantum models can 
continuously refine their performance in classification tasks by calculating and updating the gradient of 
the loss function, leading to more informative quantum feature mappings and improved ansatz for data 
processing. 

2.8.   QML Architecture and VQC Model 

Key metrics such as RMSE, mean absolute error (MAE), and mean absolute deviation (MAD) 
evaluate a model's effectiveness. These metrics provide insights into how well the model's predictions 
align with the characteristics of the tested data, where lower values indicate fewer prediction errors and 
suggest greater accuracy of the model [9] [24], [31]. 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (𝑌𝑖 ′ − 𝑌𝑖)2𝑛

𝑖=1  (5) 

𝑀𝐴𝐸 =
1

𝑛
∑ |𝑌𝑖 ′ − 𝑌𝑖|

𝑛
𝑖=1  (6) 

𝑀𝐴𝐷 =
1

𝑛
∑ |𝑌𝑖 ′ − 𝑌̅𝑖|

𝑛
𝑖=1  (7) 

The parameters used in these evaluation formulas include in, which represents the number of samples 
in the dataset; 𝑌𝑖 , the actual observed values from the dataset; 𝑌̅, the mean value of the dataset, and 𝑌𝑖 ′, 
the predicted values generated by the model. Incorporating these characteristics into the evaluation 
criteria allows for a more comprehensive assessment of the model's performance and the predictive 
accuracy of the desired outcomes. 
 
3. RESULT AND DISCUSSION 

Table 1. Performance of diverse proposed VQC models 

Model Encoding Ansatz RMSE MAE MAD 
VQC-1 ZZFeatureMap RealAmlitude 6.27 5.51 5.21 
VQC-2 ZZFeatureMap EfficientSU2 6.30 6.12 6.09 
VQC-3 ZZFeatureMap TwoLocal 6.44 6.17 6.18 
VQC-4 PauliFeatureMap RealAmlitude 6.15 5.63 5.50 
VQC-5 PauliFeatureMap EfficientSU2 6.32 6.16 6.25 
VQC-6 PauliFeatureMap TwoLocal 6.50 6.34 6.35 

 
The performance of the VQC in predicting the CIE values of expired pharmaceutical compounds 

as corrosion inhibitors is shown in Table 1. For RMSE, a lower score indicates better accuracy, as this 
metric calculates the average error between predictions and actual values. VQC-1 is more accurate than 
models VQC-2 and VQC-3, achieving the lowest RMSE score of 6.27 among models using ZZFeatureMap 
encoding. This result highlights that combining ZZFeatureMap encoding with the RealAmplitude ansatz 
effectively predicts data patterns. 

Conversely, among the PauliFeatureMap models, VQC-6—which uses the TwoLocal ansatz with 
PauliFeatureMap encoding—shows the highest RMSE (6.50), MAE (6.34), and MAD (6.35) values, 
indicating more significant variability and reduced prediction accuracy. This suggests that this 
configuration may not adequately capture the dataset's complexity compared to other models. Notably, 
VQC-4 achieves competitive performance metrics (RMSE = 6.15, MAE = 5.63, MAD = 5.50) using 
PauliFeatureMap encoding with the RealAmplitude ansatz, effectively capturing data patterns 
comparable to those in ZZFeatureMap models. This highlights the importance of ansatz selection and 
encoding in optimizing VQC performance. 
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Overall, the investigation underscores the significant impact of encoding and ansatz settings on 
VQC model performance. Certain models, like VQC-6, illustrate the potential limitations of specific 
combinations, while others, such as VQC-1 and VQC-4, demonstrate the effectiveness of particular 
configurations in enhancing prediction accuracy. This comprehensive analysis highlights the need for 
tailored setups to optimize VQC performance for specific datasets and applications, providing insight 
into how different quantum circuit architectures influence prediction outcomes. 

 

Figure 7. Scatter plots (left) and residual error plots (right) illustrate how various models predict individual data points. 

 

The analysis presented in Figure 6, which includes scatter and residual error plots, 
demonstrates the effectiveness of the VQC model. The scatter plot shows a spread of data points around 
the diagonal line across all models, indicating variation in predicted values relative to actual values. In 
the scatter plot (left side), there is a strong correlation between actual and predicted values for both 
training data (blue points) and test data (red points), with the points closely aligning with the ideal line 
(y = x). This suggests that the model generally accurately predicts CIE values, particularly for the training 
data. In the residual plot (right side), residuals (the differences between predicted and actual values) are 
plotted against actual CIE values. The random distribution of residuals around the horizontal zero line 
indicates no systematic bias in the model’s predictions. The even spread of residuals above and below 
the zero line suggests that prediction errors are not concentrated within a specific value range. 

Table 2. Comparison with other works 

Model RMSE MAE MAD Ref. 

QML: VQC-1 6.27 5.51 5.21 This work 
VQC-4 6.15 5.63 5.50 This work 

CML: ARX 7.03 - - [3] 
GB 6.40 4.80 - [19] 

 
Table 2. compares QML models using the VQC method and CML models from previous studies 

in predicting the corrosion inhibition efficiency (CIE) of expired pharmaceutical compounds. The 
quantum models (VQC-1 and VQC-4) demonstrate competitive performance with classical models, 
especially regarding RMSE, where both models outperform ARX and GB. The comparison indicates that 
quantum models (QML), specifically VQC-1 and VQC-4, achieve prediction accuracy on par with classical 
models (CML) for CIE values. VQC-4 slightly outperforms VQC-1 in accuracy, with a lower RMSE (6.15 
vs. 6.27), although it has slightly higher MAE and MAD values. The classical ARX model has the highest 
RMSE (7.03), indicating a more significant prediction error than the quantum and other classical models. 
In contrast, the GB model performs relatively well with an RMSE of 6.40 and a lower MAE (4.80), though 
MAD data for this classical model is unavailable. 

In summary, VQC-4 surpasses VQC-1 by achieving lower prediction error, improved accuracy, 
and a more balanced distribution of errors centered around zero. The selection of encoding and ansatz 
configurations plays a crucial role in determining the effectiveness of QML models, with certain setups 
delivering enhanced predictive accuracy. Each QML model exhibits unique strengths and limitations 
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based on its encoding and ansatz choices. QML holds promise as a groundbreaking approach, 
transcending the constraints of traditional modeling techniques by uncovering new correlations and 
providing deep insights into corrosion inhibitors through molecular structure analysis. This innovative 
method has the potential to transform understanding and prediction in corrosion inhibitor research by 
revealing quantum-level details previously unexplored by conventional models. 

Furthermore, research is ongoing to achieve reduced prediction errors. Increasing the quantity 
of samples in the dataset is one of our plans. Enlarging the dataset will aid the QML model's improved 
training and generalization by decreasing overfitting and increasing accuracy. (2) Construct the QML 
model using several circuit topologies. We can find more effective and efficient architectures for this task 
by experimenting with alternative quantum circuit designs, such as changing the amounts of qubits, 
types of gates, and depth of the circuits. (3) Put sophisticated feature engineering into practice. 
Improving the process of extracting and selecting features to better capture the underlying patterns 
pertinent to the quantum model in the data. (4) Examine strategies for mitigating quantum errors and 
using techniques to lessen the influence of mistakes and noise present in quantum computing to increase 
the accuracy of the findings. Our goal in developing these approaches is to improve the applicability, 
accuracy, and performance of QML models across various domains. 

Moreover, research is ongoing to minimize prediction errors. One of our strategies is to increase 
the number of samples in the dataset. Expanding the dataset will help reduce overfitting and enhance 
accuracy, leading to better training and generalization of the QML model. (2) We plan to construct the 
QML model using various circuit topologies. By experimenting with different quantum circuit designs—
such as adjusting the number of qubits, types of gates, and circuit depth—we aim to identify more 
effective and efficient architectures for this task. (3) We will implement advanced feature engineering 
to refine the features' extraction and selection process, allowing for better capture of the underlying 
patterns relevant to the quantum model in the data. (4) We will explore methods to mitigate quantum 
errors by employing techniques to reduce the impact of errors and noise inherent in quantum 
computing, thereby enhancing the accuracy of the results. Our objective in developing these approaches 
is to improve the applicability, accuracy, and performance of QML models across various domains. 
 
4. CONCLUSION 

This research investigates the potential of QML in predicting the corrosion inhibition capacity 
of expired pharmaceutical compounds. The proposed QML models show varying performance based on 
evaluation metrics, particularly in encoding and ansatz design, with the VQC method demonstrating 
competitive results against other CML methods. The study highlights the need for larger datasets to 
improve predictability while emphasizing QML's potential in exploring anti-corrosion materials. Despite 
its limitations, this research lays the groundwork for QML's ability to predict anti-corrosive properties. 
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