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When conducting marine operations that rely on wave conditions, such 
as maritime trade, the fishing industry, and ocean energy, accurate wave 
downscaling is important, especially in coastal locations with 
complicated geometries. Traditional approaches for wave downscaling 
are usually obtained by performing nested simulations on a high-
resolution local grid from global grid information. However, this 
approach requires high computation resources. In this paper, to 
downscale global wave height data into a high-resolution local wave 
height with less computation resources, we propose a machine learning-
based approach to downscaling using the Temporal Convolutional 
Network (TCN) model. To train the model, we obtain the wave dataset 
using the SWAN model in a local domain. The global datasets are taken 
from the ECMWF Reanalysis (ERA-5) and used to train the model. We 
choose the coastal area of Bengkulu, Indonesia, as a case study. The  
results of TCN are also compared with other models such as LSTM and 
Transformers. It showed that TCN demonstrated superior performance 
with a CC of 0.984, RMSE of 0.077, and MAPE of 4.638, outperforming 
the other models in terms of accuracy and computational efficiency. It 
proves that our TCN model can be alternative model to downscale in 
Bengkulu’s coastal area. 
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1. INTRODUCTION 

Maritime activities, such as maritime trade, the fishing industry, and ocean energy, are highly 
dependent on ocean conditions, especially wave height conditions. Several factors may affect maritime 
activities, such as extremely high winds that result in high waves or cyclones that lead to very high 
waves. Especially for wave condition factors, an analyzable downscaling of ocean waves is indispensable 
in maritime activities to assist, reduce the possibility of accidents, and reduce the likelihood of accidents 
and losses resulting from accidents due to sea conditions [1]. Accurate characterization of local or high-
resolution wave climate is required. Wave climate is usually characterized by two sources of 
observations, buoys and satellites, and results from numerical models or dynamical downscaling. Buoys 
have the disadvantage of short records and significant gaps, while satellites provide global coverage but 
have only been available since 1992. Therefore, downscaling, such as dynamical and statistical 
downscaling, is an excellent alternative to performing high-resolution simulations [2]. 

To perform the wave downscaling process, several numerical wave models have been employed 
by researchers in the last three decades. For simulating wave height, especially in coastal areas, a 
spectral wave model Simulating Wave Nearshore (SWAN) is preferable for downscaling.  Alizadeh et al. 
[3] introduced a distributed wind downscaling method for modeling wave climate under future 
scenarios. This technique uses a regional climate model (RCM) to simulate wind fields at various 
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resolutions, followed by a statistical correction method to adjust wind speed and direction. The 
corrected wind fields are then utilized as inputs for the SWAN wave model to predict wave parameters 
such as significant wave height, mean wave period, and mean wave direction. The study assesses the 
method's performance by comparing simulated wave parameters with observations and other wave 
models for the present climate.  

Additionally, the technique is applied to project changes in wave climate for future scenarios 
(RCP4.5 and RCP8.5). The findings indicate that the method enhances wave simulations' accuracy and 
suggests significant future wave climate alterations, including higher waves and longer periods in 
specific regions. The study by Umesh [4] evaluates input-dissipation parameterizations in WAVEWATCH 
III, a third-generation wave model. Comparing results with a nested WAVEWATCH III-SWAN model in 
the Indian Seas sheds light on wave prediction accuracy vital for maritime activities and coastal 
engineering. The paper likely provides detailed insights into parameterization effects, guiding optimal 
wave simulation settings in the Indian Seas. In Björkqvist's paper [5], they compared WAM (Wave Action 
Model) with SWAN and WWIII. The WAM, among SWAN and WW3, is employed to simulate wave 
dynamics within Helsinki's coastal archipelago, utilizing a high-resolution grid and dual wind forcings. 
WAM exhibits favorable agreement with wave buoy measurements concerning significant wave height, 
showing minimal disparities in biases and root-mean-square-errors (RMSE) compared to other models. 
Notably, WAM tends to propagate long-wave energy more effectively into the archipelago, leading to 
heightened peak periods along the coast. These disparities mean peak periods between models can 
reach up to 1.4 seconds. However, WAM occasionally underestimates high-frequency wave energy under 
specific wind directions, potentially due to inadequate friction velocity. Furthermore, variations in the 
upper integration frequency contribute to biases in the mean period by approximately 1 second. While 
WAM effectively captures the spatial variability of the wave field within the archipelago, it encounters 
challenges in replicating temporal wave parameter variability. In a study by Martinez[6], it was 
explained that the dynamical downscaling approach requires significant computational power while 
also demanding a large amount of data as input.  The implementation of this technique also emphasizes 
the need for a high level of expertise to ensure proper and effective interpretation of the resulting 
simulation results. Through an in-depth understanding of these constraints, it is hoped that this will help 
design and implement this method more efficiently when conducting ocean wave height simulations. 

Machine learning has been applied extensively as a substitute for downscaling and enhancing 

earlier simulation models. For example, Kim [7] forecast one week in Hitachinaka Port, Japan, using six 

years of six-hourly data from the European Center for Medium-Range Weather Forecasts (ECMWF), 

National Oceanic and Atmospheric Administration (NOAA), and Japan Meteorological Agency (JMA). Kim 

employed the Group Method of Data Handling (GMDH) and Artificial Neural Network (ANN) as their two 
machine-learning techniques. Their work demonstrates that the machine learning framework for 

nearshore wave prediction may enable wave forecasts up to one week in advance and be applied to areas 

where nearshore wave observation data is accessible. Another ANN model used for downscaling is Long 
short-term memory (LSTM). In a study conducted by Wei [8], two years of metrological data from NOAA 

were used to train the LSTM model on the Atlantic Coast of the United States, demonstrating that 

Artificial Neural Networks (ANNs) are capable of functioning well and are free from overfitting and 
underfitting issues; short-term forecasts (one to six hours) yield more accurate results than long-term 

predictions (24 to 48 hours). In the paper of Adytia et al. [9] using a more recent model, namely 
Bidirectional Long short-term memory (Bi-LSTM) with results with 14-day prediction results with a 

correlation coefficient (CC) score of 0.97, an RMSE score of 0.16, and a mean absolute percentage error 

(MAPE) score of 11.79. In the paper of Atiko & Adytia [10], they used the Transformers model to perform 
wave downscaling. Here, they were able to get the accuracy of the model with a CC performance of 0.96, 

an RMSE score of 0.16, and a MAPE score of 11.79. Zhang's study [11] showed that the Temporal 
Convolutional Network (TCN) can outperform the LSTM model for forecasting Traffic Flow. Wehage’s 

study [12] compares machine learning models for weather forecasting, highlighting the TCN as a 

standout model. The TCN outperformed other models in six out of ten parameters when predicting 
weather conditions. This indicates its superior ability to effectively capture the nonlinear 

interrelationships among weather parameters and handle multivariate and sequential data. The TCN’s 
architecture, which includes dilated convolutions, allows it to process long-range patterns and provides 

a significant advantage over traditional models that do not encode sequential information. The results 

suggest the TCN is a promising tool for accurate and fine-grained localized weather forecasting. In this 
research, we propose to model wave downscaling by using the TCN model. We choose a case study of 
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the coastal area of Bengkulu, Indonesia, which its coastal area directly faces the open Indian Ocean. In 
this area, waves are dominated by swell. 

In this study, we suggested performing downscaling from a global grid using a machine learning 
technique to use the TCN to gain higher resolution. We train the TCN downscaling model using the 
spatial-temporal data of hourly waves in Bengkulu, Indonesia. By utilizing the SWAN model for spectral 
wave simulation, local wave height data are obtained by utilizing the global wave height data from ERA-
5 (ECMWF). To get the best accuracy for downscaling using machine learning, we perform feature 
selection using a spatial correlation approach, in which we select the best location of wave global data 
as a feature for machine learning prediction, i.e., using TCN. Results of simulation are evaluated using 
CC, RMSE, and MAPE. Moreover, we also compare the results of TCN with the well-known Transformer 
and LSTM models. The aim of this research is to develop an improved model for simulating local wave 
patterns, which can be efficiently implemented in various locations across Indonesia with reduced 
computational costs and increased speed of the implementation of downscaling compared to the 
traditional downscaling model. The following section describes the method used to perform the 
proposed machine learning downscaling approach. 

 
2. METHOD 

In this study, we employ the TCN model in a machine-learning method for wave downscaling in 
order to collect high-resolution ocean wave data. We achieve this by running numerical simulations with 
the SWAN model, which allows us to create a dataset of waves. First, we use global wind data from ERA5 
reanalysis from ECMWF as input for the SWAN model to perform nested wave simulations. The goal of 
these nested simulations is to gather high-resolution wave data in the research region, which is 
Indonesia's Bengkulu coast. The machine learning model uses the collected wave dataset as training data 
and uses a regression from global wave data to local wave data to calculate the downscaling. The ensuing 
sections provide a detailed description of these steps. 

2.1.  System Design 

 The stage of our System Design is depicted in Figure 1 below. Initially, we acquire the global and 
simulated wave data, which undergoes preprocessing and partitioning into Training and Dataset 
segments. Following this, we conduct Feature Engineering utilizing the training dataset. Upon achieving 
satisfactory outcomes, testing is conducted using the test dataset to procure High-Resolution Wave data 
and assess the results. 
 

 
Figure 1. Flowchart of the machine learning-based downscaling by using the TCN model. 

 

2.2.  Global Wave Data 

We use the global wave height data from ECMWF's ERA-5 [13] with a spatial grid resolution of 
0.5° as the input for the downscaling TCN Model. Based on the global wave data, we use the SWAN model 
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to simulate and use as the goal for high-resolution local wave data at 102°9'56.90" E and 3°51'27.28" S. 
Both of the data are from Bengkulu, Indonesia, as can be seen in Figure 3 and span from 2014 until 2022. 

 

 
Figure 2. Location of study area in Bengkulu, Indonesia. The figure indicates the area for the wave simulation in the global 

domain. 

 
Figure 3. A zoom of the coastal area in Bengkulu, Indonesia. The triangle marker indicates the location of the local wave to be 

predicted in the downscaling process. 

 

2.3. Simulated Wave Data 

As mentioned, in this paper, we use the spectral wave model Simulating Waves Nearshore 
(SWAN) as a numerical wave model to construct local wave data that will later be the target for our 
downscaling. The model is used because it can consider various factors affecting waves, including wind 
force, tidal currents, wave boundary conditions, and Bathymetry [14]. It is designed to replicate waves 
in both shallow and deep oceans. [15].  

2.4. Feature Engineering 

To design an accurate machine learning-based wave downscaling, it is necessary to choose 
appropriate features as input for the machine learning model. Here, we apply features engineering 
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technique by selecting locations with spatial correlation values, a statistical relationship between values 
measured at various locations within a region or geographic space of wave height data both in the global 
domain, and in the local domain. The spatial correlation attention method comprehensively examines 
the interconnections among variables and dynamically evaluates the significance of various variables 
within input data across varying time intervals [16]. Using Pearson's Correlation coefficient, the 
correlation coefficient (CC) between each wave data point from both the global domain and the local 
domain will be determined. Depending on the CC value, the CC values will be indicated as colored points. 
In addition to using spatial correlation, feature selection will be made based on the duration of the 
training data, which is two, four, six, and eight years long, respectively. In Boulmaiz's [17] study, the 
length of the training data has been shown to affect the model's performance. 

2.5.  Temporal Convolutional Networks (TCN) 

In this paper we use the rather recent machine learning model called the Temporal 
Convolutional Networks or TCN to calculate prediction of wave downscaling. The TCN, as a 1D 
convolutional architecture, utilize a convolutional network, which is a convolution that only involves 
elements from the same or previous time in the last layer. TCN also uses Sequence Modeling, Causal 
Convolutions, and Dilated Convolutions to improve computational performance and long-term 
memory[18]. 

2.5.1. Causal Convolution 

 One of techniques used in the TCN is Causal Convolution where the goal to understand the 
patterns in a sequence of inputs 𝑥0, 𝑥1, … , 𝑥𝑡  to be able to predict the corresponding outputs 𝑦0, 𝑦1, … , 𝑦𝑡 
at each time step also known as Sequence Modeling. When predicting the output 𝑦𝑡  at a time 𝑡. it should 
only use information from previously observed inputs and not depend on the future input such as 𝑡 + 1. 

2.5.2. Dilated Convolutions 

 Dilated convolutions are a variant of convolutional operations where the kernel is expanded by 
introducing spaces between its elements. This enables the network to encompass a broader receptive 
field without augmenting parameter count or sacrificing resolution [19]. By employing dilated 
convolutions, information can be progressively integrated across various time blocks, facilitating the 
efficient utilization of a more extensive historical context [20]. This technique employs an exponential 
increase factor 𝑓, depending on the dilation coefficient 𝐶, with the formula:  
 

𝑓 = 𝐶 𝑙 (1) 
  

Where 𝑙 represents the hidden layer. This allows the kernel to operate at a coarser scale without losing 
resolution or coverage, as illustrated in Figure 4. 
 
 

 
Figure 4. The architecture of the TCN model. 
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2.6.  Model Evaluation 

To calculate the performance of the model in predicting wave downscaling, we use three matrix 
evaluations, i.e., the RMSE, MAPE, and CC. The Pearson’s Correlation Coefficient (CC) is defined as follows 

 

𝐶𝐶(𝑋, 𝑌) =
∑ (𝑋𝑖 − 𝑋̅)(𝑌𝑖 − 𝑌̅)𝑛

𝑖=1

√∑ (𝑋𝑖 − 𝑋̅)2 ∑ (𝑌𝑖 − 𝑌̅)2𝑛
𝑖=1

𝑛
𝑖=1

 
(2) 

Here, the symbol n represents the sample size, which refers to the number of observations in the dataset. 
𝑋𝑖 denotes the value of the first sample, while 𝑋̅ represents the mean of the first sample. Similarly, 
𝑌𝑖  represents the value of the second sample, and 𝑌̅ denotes the mean of the second sample. The Root 
Mean Square Error (RMSE), and the Mean Averaged Percentage Error (MAPE) are defined as follows. 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑(𝑦𝑖 − 𝑦𝑖̂)2

𝑛

𝑖=1

 

(3) 

 

𝑀𝐴𝑃𝐸 =
1

𝑛
∑ |

𝑦𝑖 − 𝑦𝑖̂

𝑦𝑖
|

𝑛

𝑖=1

× 100% 
(4) 

 
The symbol 𝑛 represents the number of observations in the dataset. 𝑦𝑖  denotes the actual value at 
observation 𝑖 , while 𝑦𝑖̂ represents the estimated value at observation 𝑖. By calculating the Pearson CC, 
RMSE, and MAPE between the downscaled wave data and the simulated wave data from SWAN, the TCN 
downscaling model's performance can be assessed.  

 
3. RESULT AND DISCUSSION 

In this section, we discuss the results of downscaling in Bengkulu's coastal areas. We perform 
the wave downscaling process by considering spatial correlation and length of training data as variables 
in the development of model feature engineering. The TCN models and the other models used to 
compare the results will be using the same computer to compute the model using GPU runtime with 
specification as follows; the CPU Intel i5 10500 H with 2.50 GHz boosted by overclocking, 16 GB of RAM, 
NVidia RTX 3050 with 4 GB GDDR5 VRAM, and NVMe Generation 3 as the data storage. In the next 
subsection, we first perform the spatial correlation test for our feature engineering. 

3.1. Spatial Correlation 

Spatial correlation is obtained by comparing the CC scores between the global and local waves. 
The spatial association was computed using wave height data spanning eight years. As shown in Figure 
5, where triangles stand in for local wave and dots for global waves, the spatial correlation with CC > 0.0, 
we obtained 67 wave points, and in Figure 6, the spatial correlation with CC > 0.88, we obtained 34 wave 
points. 
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Figure 5. All points (CC > 0.0) of spatial correlation at Bengkulu, Indonesia 

 
Figure 6. All points (CC > 0.88) of spatial correlation at Bengkulu, Indonesia 

To find out how many wave points work best as inputs for the TCN downscaling model, we ran 
the experiments using the spatial correlation data. To test the model, 14 days ahead were predicted for 
every scenario involving spatial correlation. Then, we compared the results using CC, RMSE, and MAPE 
scores to determine which model performs the best. 

As shown in Table 1, the downscaling performance with 67 global wave points with spatial 
correlation value CC > 0.0 is better than that with 34 global wave points with CC > 0.88. We will use the 
67 global wave points as one of the features for TCN downscaling input and a reference for conducting 
the of training data test in the next section. 
 

Table 1. Table result of TCN 14 days forecasting with various spatial correlation scenarios 

Spatial Correlation Wave Data Points CC RMSE MAPE 
CC > 0.0 67 0.984 0.077 4.638 

CC > 0.88 34 0.981 0.123 9.46 

 

3.2. Length of Training Data 

With 42 years of available wave data in Bengkulu's coastal areas, it is imperative to conduct a 
test on the training data length to enhance our model's performance and efficiently downscaling the 
waves from the global to the local in Bengkulu's coastal areas. We conduct this test by configuring 
various data length scenarios. Specifically, we utilize training data spanning two, four, six, and eight 
years to assess the optimal TCN model performance setting. 

 
Table 2. Table result of TCN 14 days forecasting with various length scenarios 

Length of Training Data CC RMSE MAPE 
2 Years 0.946 0.382 30.679 
4 Years 0.983 0.186 15.015 
6 Years 0.977 0.086 6.042 
8 Years 0.984 0.077 4.638 

 
As shown in Table 2, eight years of training data length have the best result compared to the 

others having CC value of 0.984, RMSE value of 0.077, and MAPE value of 4.638. We will use eight years 
of data training as the input of the TCN model for downscaling in Bengkulu's coastal areas. 

3.3. Comparing Model 

In this section, we will compare the results of our model and some other models with the result 
of wave data in Bengkulu's coastal areas. The different models that are used for comparison are 
Transformers and LSTM. Each model also features engineers like the TCN model to have a fair result. 14-
day prediction is used for comparing the models and the actual wave data. 
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Figure 6. A comparative analysis of results of prediction by using several machine learning models, i.e.,  the TCN(Red), 

Transformers(Black), LSTM(Green), and SWAN(Blue) results 

As shown in Figure 6, the results of both the TCN and the LSTM are relatively precise. However, we still 
need to compare models that perform better and have faster computation speeds compared to other 
models. We include the table for comparison as follows. 

 
Table 3. Table result 14 days downscaling using TCN, Transformers, and LSTM 

Model Wave  
Data Points 

Length of 
Training Data 

CC RMSE MAPE Training 
Duration 

TCN 67 8 Years 0.984 0.077 4.638 1 min 24 sec 
Transformers 34 8 Years 0.934 0.159 10.696 9 min 3 sec 

LSTM 67 2 Years 0.985 0.089 5.684 1 min 38 sec 

 
As shown in Table 3, the TCN model outperforms other models in terms of results, and the TCN model 
also demonstrates superior computation speed compared to LSTM and Transformers when handling 
larger datasets. 

3.4. Discussion 

 The outcomes of our analysis align with prior research findings, demonstrating the superior 
performance of the TCN model over the LSTM model [11], [12]. The TCN model excels in CC, RMSE, and 
MAPE and demonstrates marginally faster computation compared to LSTM. In Shamshirband’s paper 
[21], the comparison between the Machine Learning models and the SWAN model demonstrates that the 
ANN outperforms the SWAN model regarding computational efficiency, input requirements, and 
implementation. Specifically, the TCN, which is a type of ANN used in our research, yielded results 
comparable to the SWAN model in the coastal areas of Bengkulu. This indicates that the TCN model is 
capable of effective downscaling in Bengkulu’s coastal areas and potentially in other regions of 
Indonesia.  
 
4. CONCLUSION 

This paper presents a machine learning-based downscaling method to provide high-resolution 
wave downscaling for complex locations in Bengkulu's coastal areas. The method uses local wave data 
from nested simulations of the SWAN for the TCN downscaling model in addition to global wave height 
ERA-5 from ECMWF. Finding areas with strong spatial correlation values achieved by calculating the CC 
between global and local wave height data makes feature selection. It was found that the downscaling 
model's results are strongly influenced by the length of the training data for our TCN model. Optimal 
performance for the TCN model is achieved with a training data duration of 8 years and encompassing 
67 global points that are selected as features for the model. The result was a CC value of 0.984, an RMSE 
value of 0.077, and a MAPE value of 4.638. Which resulted in better results than the model we compared 
it with. While the difference is significant compared to Transformers, the TCN model has a relatively 
small difference in performance but shows substantial differences with the data input difference. The 
TCN model is relatively accurate for downscaling in Bengkulu's coastal areas. Therefore, TCN can be 
used as the alternative for downscaling for Bengkulu’s coastal areas, which have relatively high 
performance and low computation cost compared to the SWAN model. 
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Nonetheless, it's important to note a limitation of this study: the utilization of a relatively limited 
set of global data points and lack of computation power, potentially constraining the generalizability of 
our findings. Additionally, our study solely compares the proposed method with two other deep learning 
models, excluding alternative downscaling models or other machine-learning-based approaches, and 
our data is limited only to Bengkulu’s coastal areas. We hope that the next study will optimize the TCN 
model and try to use the model in different regions of Indonesia or across the globe. 
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