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The manual and time-consuming nature of current agronomic 
technology monitoring of fertilizer and irrigation requirements, 
the possibility of overusing fertilizer and water, the size of 
cassava plantations, and the scarcity of human resources are 
among its drawbacks. Efforts to increase the yield of cassava 
plants > 40 tons per ha include monitoring fertilization approach 
or treatment, as well as water stress or drought using UAVs and 
deep learning. The novel aspect of this research is the creation of 
a monitoring model for the irrigation and fertilizer to support 
sustainable cassava production. This study emphasizes the use 
of Unnamed Aerial Vehicle (UAV) imagery for evaluating the 
irrigation and fertilization status of cassava crops. The UAV is 
processed by building an orthomosaic, labeling, extracting 
features, and Convolutional Neural Network (CNN) modeling. 
The outcomes are then analyzed to determine the requirements 
for air pressure and fertilization. Important new information on 
the application of UAV technology, multispectral imaging, 
thermal imaging, among the vegetation indices are the Soil-
Adjusted Vegetation Index (SAVI), Leaf Color Index (LCI), Leaf 
Area Index (LAI), Normalized Difference Water Index (NDWI), 
Normalized Difference Red Edge Index (NDRE), and Green 
Normalized Difference Vegetation Index (GNDVI). 
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1. INTRODUCTION 

Food is defined as anything derived from living things, such as food additives, foodstuffs, and 
other goods, and anything processed or unprocessed used in agriculture, forestry, plantations, fisheries, 
animal husbandry, and water and water. Components are utilized in the production, processing, or 
preparation of meals or beverages [1]. Especially for Indonesia, a tropical nation with a sizable 
population, food security is crucial [2]. Reconstruction after the COVID-19 epidemic can benefit from 
food security. With a score of 60.2, Indonesia is now rated 63 out of 113 nations in terms of food security. 
Even while the scores seem to improve, this indicates that there is still much space for growth. Food 
security is based on three (three) pillars: 1) accessibility, 2) affordability, and 3) quality and safety [3]. 
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Cereals (wheat, rice, and corn), tubers (cassava and sweet potatoes), nuts (soybeans, peanuts, and long 
beans), and other plants are examples of plants that provide food security [4]. Since the cassava plant 
has a very high output potential (> 40 tonnes/ha), it was selected and developed to support Indonesia's 
food security [5]. Diversification is a common feature of industrial derivatives in the form of fuel, food, 
and feed [6]; simple farming is carried out [7] since there are abundant genetic resources in cassava 
plants [8]. 

The nation may continue to grow, the utilization of state-owned land must be maximized, and it 
is intended that import attempts from outside be restricted to preserve food security. Because it is well 
recognized that the agronomic practices used in these areas tend to be less sustainable, areas not too 
large for growing food crops typically have less than ideal sustainability in their use and utilization. 
There are currently weaknesses in the monitoring process, such as manual fertilization and irrigation, 
that take a long time to implement. Other issues that should be taken seriously include the excessive or 
insufficient supply of water and fertilizer, the suboptimal use of large areas of land, and the lack of human 
resources, which make it more difficult to carry out efforts to ensure food security and therefore have 
an impact on the volatility of energy, costs, and mental energy. 

Given that Indonesia is a tropical country where this plant may be grown, the cassava plant is 
used for study [9]. Therefore, there is a lot of possibility for agricultural sustainability by integrating 
technology and analysis with the right applications; blockchain and artificial intelligence are two 
examples of this [10] various techniques for forecasting the prices of agricultural products [11], and 
analysis is to review data while monitoring to address the relevant issues quickly. 

Water electrical conductivity (EC) has previously been predicted using machine learning 
models, with decision tree-based models like XGBoost being among the most popular. EC is the primary 
factor guiding fertigation strategies in operational settings. Yet, its measurement in the drainage water 
may not entirely indicate the root zone in the growing medium [12]. 

Researchers monitor the availability of plants and other factors related to the targets they are 
studying to make sure they are satisfied [1] (using cassava plants in this study), fertilizing practices [13], 
conduits for irrigation are accessible [14], and wooded regions [15], particularly with low levels of 
production. A machine learning model is required to apply the technology, and this study addresses the 
models that may be applied to manage the outcomes of gathering analytical data. Geological mapping or 
area exploration must be done to gather this data. Given the size of the area that the research objective 
is, remote sensing is employed in conjunction with drone technology to facilitate mapping [16] to speed 
things up. After obtaining the data, researchers must process the information gathered, going through 
several phases such as data collecting, pre-processing, modeling, and monitoring. 

A machine learning method called Random Forest (RF) has shown to be extremely accurate in 
several agricultural applications. The individual correlation parameters, or Vegetation Indices (VI), are 
the foundation of this methodology. Normalized Difference Vegetation Index (NDVI), Normalized 
Difference Red Edge Index (NDRE), and Green Normalized Difference Vegetation Index (GNDVI) were 
the top three indices in rank-based analysis using VIs extracted from UAV-based multi-spectral 
imagery—their combination with RF-enhanced crop yield prediction. Higher accuracy was obtained 
using additive regression, which used RF as the foundation for weak learning. Its correlation coefficient 
and mean absolute error, or MAE, were 0.78 and 853.11 kg ha-1, respectively [17]. 

Deep learning is the most extensively utilized application in agriculture. Consequently, 
increasing, regulating, and enhancing agricultural production is possible. Integrating deep learning into 
modern agricultural tools, technologies, and algorithms—such as image classification, feature 
extraction, transformation, and pattern analysis—is crucial for smart agriculture. Deep learning is 
frequently used to solve these problems [18].  

Researchers are looking for a good and efficient way to monitor the agricultural development 
process based on the literature study that has been completed. This is because there aren't many 
resources available that can be used to monitor the development of food crops efficiently and quickly. 
Most of the literature research that is now available takes the form of in-depth analyses of connected 
topics. As previously mentioned, this article explains how technology can be used to monitor initiatives 
because agricultural technology can now boost farmer production and improve the agricultural sector's 
efficiency. The present research positions and future research proposals for applications conducted by 
researchers in relevant domains constitute the contribution of this article. Hopefully, this paper can 
provide light on appropriate plant monitoring techniques. The introduction, methods, discussion results, 
conclusions, and relevance to earlier research are applied according to the article's structure. This 
paper's innovation is developing a monitoring model for cassava plants' irrigation and fertilization to 
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support sustainable cassava production. This study highlights the use of imagery from Unnamed Aerial 
Vehicles (UAVs) to assess cassava crops' irrigation and fertilization levels. 
 
2. METHOD 

Researchers use a research method called the Systematic Literature Review, or SLR, based on a 
systematic literature study that requires consecutive steps to be completed. Planning is the initial step 
in any research activity; it entails defining the topic, setting goals, locating the most recent publications, 
and making field observations.  

Creating a plan is the first step to take. Creating research questions (RQ) and deciding on the 
review process are the two steps that will be completed in this part. Getting the RQ ready is the first step. 
This step is crucial because RQ is used to direct the literature search and excavation. Table 1 displays 
the research question that was developed. 

 
Table 1. Research question 

Research Question 
RQ1: What cases can be solved by machine learning with remote sensing implemented in plants? 
RQ2: What is xception deep learning and how does it work? 
RQ3: What is the vegetation index and explain its types? 
RQ4: How to develop a model for monitoring the watering and fertilizing to support sustainable cassava production? 

 
This study poses three research topics: machine learning ideas, case studies, and research 

questions. Using remote sensing on crops, RQ1 explains which scenarios can be resolved by machine 
learning. The operation of deep learning is explained using RQ2. The creation of a model to track the 
fertilizing and watering to support sustainable cassava production is explained by RQ3. Formulating the 
study scope to identify the problem boundaries is one method of determining the review protocol. By 
choosing the terms to be used in the article search, the research problem here is limited. In Table 2, the 
keywords are displayed. 

 
Table 2. Keywords Searching 

Code Keyword 
Key1: “Machine Learning” AND “Remote Sensing” or “Plants” 
Key2: “Deep Learning” or “Convolutional Neural Network” 
Key3: “Vegetation Index” or “Normalized Difference Vegetation Index” or “Green Normalized Difference Vegetation Index” 

or “Normalized Difference Red Edge Index” or “Normalized Difference Water Index” or “Soil-Adjusted Vegetation 
Index” or “Leaf Color Index” or “Leaf Area Index” 

Key4: “Monitoring Watering” or “Monitoring Fertilizing” or “Cassava Plants in Limited Production Forest” 

 
To perform literature studies, publications pertinent to the research being done are gathered. 

The collection employs the following general classification techniques: 1) To find research relevant to 
the scope of this work, a systematic search was carried out for papers published in 2020–2024. Academic 
resources like Science Direct, IEEE Xplore, Google Scholar, and other Scopus-indexed journals and 
conferences were used, and 2) Articles are gathered according to subtopics, and the research output, 
benefits, and drawbacks are known. The results of the SCOPUS database search (n = 193) and other 
database search results (n = 50) are included in the Literature Review Systematics with PRISMA 
diagrams in the following stages: a) Identification (n = 203); b) Filtering (n = 146); these results show 
the number of articles remaining after duplicates are eliminated. With articles (n = 97) that do not pass 
the selection c) Complete articles that have been evaluated for suitability (n = 93), complete articles that 
fail the selection (n = 68), and articles that fail the selection (n = 97), d) At the inclusion/selection step, 
78 articles are available for analysis and synthesis, as seen in Figure 1. 
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Figure 1. System Literature Review with PRISMA 
 

Applying machine learning algorithm models for agricultural purposes, particularly for the 
watering and fertilization of cassava plants, has been identified as difficult. Large-scale land mapping 
requires the necessary data, which can be gathered by remote sensing. UAV drones are equipped with 
sensors that measure reflected light from objects, enabling them to cover broad regions quickly. 

The study objectives were determined after the problem had been identified. This research 
expects that the machine learning-based monitoring model can address current issues in the agricultural 
industry, particularly in areas with limited output forests. 

Filters are used to extract the necessary data from the publications' collection and the outcomes 
of observations. When a publication has multiple subtopics within a topic, the dominant subtopic is 
chosen to fill in research gaps that occur from variations in earlier research findings concerning 
concepts, hypotheses, data, and field issues. Making conclusions is the last stage, from which it is 
intended that fresh insights into the problem may be gained for both the agricultural industry and future 
studies on the same topic. 

 
3. RESULT AND DISCUSSION 

3.1. Machine Learning with Remote Sensing Implemented in Plants 
Remote sensing is already desired for geological mapping or mineral exploitation, particularly 

in the key stages and during reconnaissance, where physical access is challenging and seasonal. 
Classifying land, vegetation, and water use or cover is a typical use of machine learning in remote sensing 
[19]. Table 3 lists a few papers that have been gathered about the use of remote sensing technology. 

Table 3. Catalog of Research Papers 

Author 
Technique 
Indexing 

An example case 
study 

Research 
Results 

Research Gaps 

[20] Deep Learning (DL) 
Convolutional 
Neural Network 
(CNN) 

Broccoli multispectral 
image from a UAV 

Accuracy of 
plant 
monitoring 
using UAV 
photography is 
61.13% 

Precision agriculture labor 
requirements can be decreased by 
optimizing irrigation and fertilization 
decisions, managing other crops, and 
keeping an eye on them. 

[21] Support Vector 
Machine (SVM) 

Sugarcane 
multispectral picture 

88% accuracy in 
RGB crop 
prediction using 
UAV 

It was demonstrated that the area under 
the disease progression curve (AUDPC-
reflectance) calculation used in this 
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Author 
Technique 
Indexing 

An example case 
study 

Research 
Results 

Research Gaps 

study was effective in classifying disease 
resistance. 

[17] Random Forest 
(RF) 

forecast the maize 
yield 

78% accuracy in 
RGB prediction 
using UAV 

Assessment of various crop yields to 
support appropriate management and 
utilization in precision agricultural 
decision-making models 

[22] DL-YOLOv3 Corn multispectral 
image from UAV 

80% accuracy in 
plant 
recognition 
using RGB from 
UAV 

Following the pin-head square phase, 
model training and testing using 
volunteer cotton plants (VC) will 
guarantee that only plants that are 
hostable to Boll Weevil can be 
discovered, maybe with greater 
precision. 

[23] CNN-Long Short-
Term Memory 
(LTSM) 

Multispectral UAV 
photo of soybeans 

Crop maturity 
estimation using 
RGB from UAV 
with 95% 
accuracy 

By estimating soybean maturity using 
satellite data, further study in this field 
may be increased. Furthermore, by using 
this approach, researchers can find 
additional soybean qualities or traits 
from other crops that can be examined 
using drone photography to ultimately 
improve decision-making. 

[24] DL-CNN UAV multispectral 
image of rice 

Plant image 
classification 
using thermal 
photography 
with a 90.04% 
accuracy rate 

Future study on deep learning and XAI 
techniques, classification research will 
be conducted to enhance the accuracy of 
the proposed CNN-16 and PlantDXAI to 
reduce classification errors. 

[25] DL- Artificial Neural 
Network (ANN) 

Sugarcane 
multispectral picture 

Indication of the 
condition of 
fertilization 
with 76% 
accuracy 

The suggested method for estimating 
chlorophyll content has to be tested in 
several sugarcane fields with various 
types and verified at various stages of 
sugarcane plant growth. 

[26] DL-CNN Multispectral UAV 
photo of cassava 

Plant leaf stress 
can be identified 
with 93% 
accuracy. 

A significant obstacle to the application 
of deep learning techniques in the field 
of plant leaf stress detection has been 
the lack of big data sets. Thankfully, 
Plant Village, a sizable database with 
thousands of photos, is now accessible; 
but a dataset with actual field photos is 
still unavailable. 

 
Lee and colleagues' research [20] possesses the benefit of being able to gauge the ideal fertilizer 

dosage and the best time to harvest broccoli based on head size. There is a gap, which is the monitoring 
and management of other crops as well as optimizing irrigation and fertilization decision-making to 
increase efficiency and lower labor requirements for precision agriculture. The drawback is that the 
single plant detection method can be integrated with disease detection to measure the level of damage 
due to disease in the future. Moreover, Simões & Amaral's research [21] the research has drawbacks as 
well. Specifically, the multispectral reflectance data collected with UAV-based sensors is sensitive to 
infections caused by two rusts (orange and brown) simultaneously, but it is not specific to one of them, 
leaving a gap. Nevertheless, the area under the disease progression curve (AUDPCreflectance) 
calculation proposed in this study has proven to be effective in classifying disease resistance. 

Studies conducted by Yadav and colleagues [22] based that an accuracy of 80% can be achieved 
in plant detection using RGB from a UAV. YOLOv3, which demonstrates the possibility of DL algorithms 
for real-time detection and mitigation using computer vision and spot-spray capable UAVs, is the 
research's benefit in identifying VC factories. The disadvantage is that, for all three input image sizes, the 
trained YOLOv3 model can be used for VC detection because there are no appreciable changes between 
these three scales. Therefore, it can be stated that using Volunteer Cotton (VC) plants for training and 
testing the model following the pin-head square phase guarantees the detection of only hostable boll 
weevil plants, possibly with increased accuracy. 

Research by Moenizade et al. [23] his research's findings demonstrates that a UAV's RGB 
readings can estimate plant maturity with a 95% accuracy rate. His work has the benefit of supporting 
the CNNLSTM model's resilience to issues with data quality, such as dark and fuzzy images. One of the 
deep learning models also benefits from operating well on fewer frequent flights. Furthermore, the 
suggested approach is generalizable to data from different contexts. The study's shortcoming is that it 
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was unable to pinpoint other traits unique to soybeans or traits of other plants whose drone photos may 
be used for analysis. By estimating soybean maturity using satellite data, further study in this field may 
be increased. Furthermore, by using this framework, researchers can find additional soybean qualities 
or traits from other crops that can be examined using drone photography to ultimately enhance 
decision-making. 

The study conducted by Batchuluun and Park [24] yields a 90.04% accuracy rate in the image 
classification of plants using thermal imaging. The research's strength is that the suggested method for 
classifying plants and agricultural diseases outperforms other current methods, with an accuracy of 
98.55% for the thermal plant image dataset and 90.04% for the rice plant dataset. One study 
shortcoming is that the Class Activation Map (CAM) and discriminator network additions do not result 
in longer processing times during testing. Future research on classification was conducted to enhance 
the accuracy of the proposed CNN-16 and PlantDXAI to reduce classification mistakes, utilizing deep 
learning and XAI techniques. 

Studies conducted by Narmilan and colleagues [25] his research yielded a 76% accurate 
indicator of fertilization status. The results of his study demonstrate that in bigger sugarcane fields, the 
use of multispectral UAVs can be used to monitor plant health status and estimate chlorophyll content. 
By eliminating the requirement for traditional measurements of sugarcane chlorophyll concentration, 
this technology aids in the real-time management of plant nutrition in sugarcane plantations. Agronomic 
methods for gathering leaf tissue and conducting chemical analyses in the lab are time- and space-
constrained due to practical constraints. The suggested method for estimating chlorophyll content must 
be tested in several sugarcane fields with various types and verified at various stages of sugarcane plant 
growth. 

Investigation by Noon et al. [26] concluded that a 93% accuracy rate can be achieved in the 
identification of plant leaf stress. The benefit of this research is that it provides a brief overview of the 
trend of utilizing deep learning to identify plant leaf stress, which is helpful for researchers, especially 
those who are new to the subject. This research has certain limitations, specifically: a) One of the biggest 
obstacles to the application of deep learning techniques in the field of plant leaf stress detection has been 
the lack of large data sets. Thankfully, Plant Village, a sizable database with thousands of photos, is now 
accessible, but a dataset with actual field photos is still unavailable; b) Another research gap is the lack 
of real-world scenario photographs since most authors have only used pre-cropped and segmented 
synthetic images from publicly accessible databases. Certain writers do employ crowded background 
picture sets, but they do so using small data sets that self-assemble following the appropriate pre-
processing. The authors take into consideration the fact that different lighting, lightning conditions, 
capture angles, and distances can result in different deep network/classification accuracy values for 
different plants on the same network when comparing the effectiveness of the proposed deep learning 
method on field and laboratory images. Almost everyone else has improved recognition accuracy by 
doing the required preprocessing procedures on self-collected field photos; c) Another issue that deep 
learning researchers with backgrounds in computer science encounter is annotating self-collected data 
with the assistance of subject matter experts; d) In this area of study, early identification of plant 
diseases is crucial because it enables farmers to implement less expensive corrective measures by 
identifying afflicted plants at an early stage. Although hyperspectral imaging has been utilized for this, it 
is difficult to detect disease or contaminated areas because of the vast areas that are captured on surfaces 
utilizing temperature sensors and light reflector sensors; e) Every published article examined for this 
review specifically suggests deep learning for plants. With changes in host-tissue pairs, classification 
accuracy is not guaranteed to remain the same. Another unresolved issue is the lack of universal CNN 
models whose performance is independent of plants or stress. 

Large-scale land mapping is accomplished by remote sensing. Drones with sensors mounted 
may quickly traverse enormous regions by measuring light reflection from surfaces [27]. It is vital to use 
alternative spectral combinations, such as near-infrared (NIR) bands, to record plant growth and 
withering caused by water stress because standard aerial photographs (monochrome or visible in a 
spectrum of red (R), green (G), and blue (B) bands) cannot capture this information. Only a limited 
portion of the electromagnetic spectrum is visible because it consists of multiple bands with distinct 
wavelengths. Spectral reflection curve of vegetation with characteristics of absorption and reflectance. 
The wavelengths at which chlorophyll absorption occurs are 0.4 − 0.7 𝜇𝑚, 0.8 − 1.3 𝜇𝑚 for vegetation's 
near-cell structure infrared with high reflectance, and 1, 4 − 2.4 𝜇𝑚 for water absorption in bands in the 
atmosphere related to biochemistry in leaves, protein, lignin, cellulose, and water content [28]. 
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3.2. Xception Deep Learning and How Does It Work 
Deeply separable convolution (convolution followed by vertex convolution), a considerably 

more computationally efficient alternative to conventional convolution, and shortcuts between 
convolution blocks, like those in ResNet, are the foundations of the effective architecture known as 
Xception Deep Learning. The unique feature of Xception's architecture, which consists of Deepthwise + 
Maxpooling separable convolution blocks connected by shortcuts akin to a ResNet implementation, is 
that Depthwise Convolution comes before Pointwise Convolution—rather, the sequence is inverted, 
according in Figure 2 [29]. 

Xception's network architecture is shown in Figure 2. First, n × n deep point convolution is 
conducted, followed by 1 × 1 point convolution. By using this method, the network becomes lighter and 
has fewer layers and parameters. Equations (1) and (2) follow this correlation [29]. 

𝑓(𝑙+1)
𝑘 (𝑝, 𝑞) = ∑ 𝑓𝑙

𝑘(𝑥, 𝑦). 𝑒𝑙
𝑘(𝑢, 𝑣)(𝑥,𝑦)  (1) 

𝐹(𝑙+2)
𝑘 = 𝑔𝑐(𝐹(𝑙+1)

𝑘 , 𝐾(𝑙+1)) (2) 

Where (𝑥, 𝑦) and (𝑢, 𝑣) indicate the spatial index of the feature map 𝐹, and the kernel 𝐾 has a depth 
of one. The feature map of the transform layer 𝑙 is represented by 𝐹. The feature map 𝐹 is spatially 
convolved across the kernel 𝐾, and the convolution of the operation is shown by 𝑔𝑐(.) 

 

 

Figure 2. Xception Deep Learning 
 

3.3. Vegetation Index and Explain Its Type 
The vegetation index is a measure of the health of an ecosystem. It is crucial for preserving 

ecological balance, controlling the water cycle, and promoting the movement of materials and energy 
[30]. The following describes the many components of the vegetation index: Soil-Adjusted Vegetation 
Index (SAVI), Normalized Difference Vegetation Index (NDVI), Green Normalized Difference Vegetation 
Index (GNDVI), Normalized Difference Red Edge Index (NDRE), Normalized Difference Water Index 
(NDWI), Leaf Color Index (LCI), and Leaf Area Index (LAI). The formula of the vegetation index is 
explained in Table 4. 

Even though the NDVI is a useful tool for communicating vegetation status and measured 
vegetation attributes, there is a chance that end users who have had little to no remote sensing education 
misuse it because of its widespread use and popularity, particularly in Unmanned Aerial Systems (UAS) 
applications. This is how the NDVI formula is explained (3) [31]. 

To forecast responses for the three phenological stages and their averages, the sole predictor of 
great significance was the vegetative GNDVI. Average Maize Streak Virus (MSV) may be predicted using 
CIgreen during vegetative stages, while average MSV and MSV at grain filling can be predicted most 
accurately with CIgreen during flowering. The following explains the GNDVI formula (4) [32]. 

Standardized Disparity, the NDRE yield estimator performs better than the NDVI. The red edge 
spectral region (690–730 nm) is covered by NDRE in its formulation. The red peripheral channel is more 
sensitive to the amount of chlorophyll, according to several studies. The NDRE formula (5) [33]. 
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The NDWI is a widely used remote sensing indicator that enhances water features and removes 
the influence of plants and soil by using green bands and near-infrared (NIR) data. The NDWI formula is 
as follows (6) [34]. SAVI will remove the backdrop soil's silent vegetation cover. The formula for SAVI 
(7) [35] is as follows. 

LCI uses RGB parameters as a foundation. The technology is more accurate and suitable for 
assessing apple tree nitrogen when the new LCI is integrated into a smartphone-based application 
interface. Furthermore, a low-cost, user-friendly Leaf Color Chart (LCC) has been created. The model's 
output is then fed into a straightforward conditional structure, which uses certain equations to 
recalculate the model's outputs and converts them into numerical LCI values between 0 and 10. The 
formula for LCI is as follows (8) [36]. 

Leaf Area Index (LAI) is a significant phenotypic trait that is closely related to photosynthesis, 
respiration, and water use. LAI is greatly affected by the similarity between synthetic multispectral data 
and observational multispectral data. Surface and canopy structure is also affected by ecological factors 
like rainfall, solar radiation, temperature, and soil moisture [37]. In land surface and terrestrial 
ecosystem models, LAI is a crucial variable for capturing the condition of the vegetation. It is intimately 
linked to the modeling of carbon and water exchange between the land and the surrounding atmosphere 
[38]. LAI to calculate the area of leaves. Equation (9) explains the LAI formula [39]. 

Table 4. Formula Vegetation Index 
Vegetation 

Index 
Evaluated  
Qualities  

Formula Use Equality 

NDVI canopy structure, leaf area, 
chlorophyll content, and 
biomass [40] 

(𝑁𝐼𝑅 − 𝑅)

(𝑁𝐼𝑅 + 𝑅)
 

where Red (R) and Near-
Infrared (NIR) 

(3) 

GNDVI plant stress, photosynthetic 
process, leaf area, and biomass 
ratio of absorbing radiation 
[40] 

(𝑁𝐼𝑅 − 𝐺)

(𝑁𝐼𝑅 + 𝐺)
 

where Near-Infrared (NIR) 
and Green (G) 

(4) 

NDRE plant vigor, density and 
condition of the vegetation leaf 
area, chlorophyll [40] 

(𝑁𝐼𝑅 − 𝑅𝐸)

(𝑁𝐼𝑅 + 𝑅𝐸)
 

where Red Edge (RE) and 
Near-Infrared (NIR). 

 

(5) 

NDWI content, stress indication, 
fertilizer need, take-up of 
nitrogen [40] 

(𝐺 − 𝑁𝐼𝑅)

(𝐺 + 𝑁𝐼𝑅)
 

where Green (G) and Near-
Infrared (NIR). 

(6) 

SAVI take silent vegetation cover out 
of the surrounding soil [35] (

(𝑁𝐼𝑅 − 𝑅)

(𝑁𝐼𝑅 + 𝑅 + 𝐿)
) ∗ (1 + 𝐿) 

where Red (R), NIR (near 
infrared), and L represent the 
percentage of green 
vegetation cover, such as 0.5. 

(7) 

LCI chlorophyll content in leaves 
[41] 

(𝑁𝐼𝑅 − 𝑅𝐸)

(𝑁𝐼𝑅 + 𝑅)
 

where Near-Infrared (NIR), 
Red Edge (RE) and Red (R) 

(8) 

LAI simulated leaf area [39], 
carbon, and water exchange 
[38] 

−
𝑙𝑛(0.69− 𝑆𝐴𝑉𝐼)/0.59

0.91
 

using In: SAVI = Soil Adjusted 
Vegetation Index and natural 
logarithm to the base Euler 
number (constant up to 
2.71828) 

(9) 

 
3.4. Monitoring the watering and fertilizing requirements of cassava plants  

There are significant obstacles to agricultural output due to the effects of global climate change 
on crop productivity and exponential population increase. Crop performance monitoring is becoming 
more and more important in order to address these problems [42]. Crop stress can be monitored by 
using sensors and near-field communication (NFC) [43]. Unmanned Aerial Vehicle (UAV) monitoring of 
crop growth is supported by fertilizer distribution management and remote sensing monitoring of 
chlorophyll content [44]. In a long-term experiment, the impacts of fertilizing with nitrogen, potassium, 
and phosphorus were evaluated for the UAV-derived spectral vegetation index using the Normalized 
Difference Vegetation Index (NDVI) [45]. 

In order to determine how much irrigation is necessary and to maintain ideal soil moisture 
conditions for maximum development potential, it is critical to monitor crop transpiration [46]. Studying 
the physiology of stress in plants requires identifying and observing drought stress in plants growing in 
their native environments [47]. Total dry biomass output of two field-grown cassava cultivars, both with 
and without fertilization and water stress, expressed in kg/m2. The values in the two cultivars at each 
harvest time for zero water stress that are indicated by the same capital letter do not differ substantially 
[48]. 

A plant water stress monitoring system that links the three variables-soil, plant, and weather-
in real time by detecting plant Acoustic Emission (AE). In addition to affecting water stress and 



JOIN (Jurnal Online Informatika)  p-ISSN: 2528-1682 
e-ISSN: 2527-9165 

 

A Machine Learning Monitoring Model for Fertilization and Irrigation of Cassava Plants in Limited 
Production Forests Indonesia Ahmad Chusyairi1, Yeni Herdiyeni2, Heru Sukoco3, Edi Santosa4 

198 

 

atmospheric drought, the automated monitoring system created with the help of the virtual instrument 
platform may also be used to automatically regulate the greenhouse environment [49]. 

Remote sensing and digital monitoring [50] offer an irrigation and fertilizing model. in order to 
create models for monitoring and detection that are utilized in limited-production forests. Accurately 
identifying plant water stress is the foundation of precision irrigation techniques, which are a key part 
of the water-saving approach in agriculture and a way to increase water-saving efficiency.  

 
4. CONCLUSION 

The novel aspect of this research is the creation of a monitoring model for irrigation and 
fertilizer to support sustainable cassava production. This study emphasizes the use of Unnamed Aerial 
Vehicle (UAV) imagery to evaluate the irrigation and fertilization status of cassava crops. Finding cassava 
land for drone flights is a challenge. After the drone is processed to create an orthomosaic, labeling, 
feature extraction, and CNN modeling are performed, and the results are examined to identify water 
stress and nutrient deficits. Important new information about the application of UAV technology, 
multispectral imaging, thermal imaging, vegetation index (NDVI, GNDVI, NDWI, NDRE, SAVI, LCI, and 
LAI), and deep learning in numerous facets of precision agriculture is offered by the study that the 
aforementioned researchers presented. Every study has benefits and drawbacks. The study has 
limitations in terms of generalizability, sensitivity to disease, and precise detection, for instance. 
Furthermore, this study needs to handle differences and problems, including using real-world data, 
identifying leaf stress in different crops, and optimizing deep-learning models. Nonetheless, this study 
opens the door for more advancements in precision farming and the application of cutting-edge 
technology to boost agricultural productivity and decision-making. 
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