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CatBoost is a powerful machine learning algorithm capable of 
classification and regression application. There are many studies 
focusing on its application but are still lacking on how to enhance its 
performance, especially when using RFE as a feature selection. This 
study examines the CatBoost optimization for regression tasks by using 
Recursive Feature Elimination (RFE) for feature selection in 
combination with several regression algorithm. Furthermore, an 
Isolation Forest algorithm is employed at preprocessing to identify and 
eliminate outliers from the dataset. The experiment is conducted by 
comparing the CatBoost regression model's performances with and 
without the use of RFE feature selection. The outcomes of the 
experiments indicate that CatBoost with RFE, which selects features 
using Random Forests, performs better than the baseline model without 
feature selection. CatBoost-RFE outperformed the baseline with notable 
gains of over 48.6% in training time, 8.2% in RMSE score, and 1.3% in 
R2 score. Furthermore, compared to AdaBoost, Gradient Boosting, 
XGBoost, and artificial neural networks (ANN), it demonstrated better 
prediction accuracy. The CatBoost improvement has a substantial 
implication for predicting the exhaust temperature in a coal-fired power 
plant. 
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1. INTRODUCTION 

Decision-tree-based methods have been widely recognized for their effectiveness in handling 
large datasets, with the added benefit of significantly reducing training convergence time [1]. The trees 
within the forest exhibit distinct characteristics, so forming a diverse assemblage that together 
outperforms any individual tree. One of the algorithms discussed in the literature is the CatBoost 
algorithm [2]-[3], which represents an improved iteration of the gradient-boosting decision tree method 
and employs binary decision trees as its foundational predictors. CatBoost –an algorithm based on 
decision trees – demonstrates high suitability for machine learning problems involving categorical and 
heterogeneous data [4]. As a result, CatBoost has been widely utilized in numerous research works to 
address categorization issues. The utilization of this technique is observed in various disciplines, 
including finance [5]-[6], medical [7]-[8], failure prediction [9], fraud detection [10]-[13], psychology 
[14], anomaly detection [15], cyber-security [16], material engineering [17], biochemistry [18]-[19], 
biology [20]-[21], and numerous other domains. 

The primary focus of the development of CatBoost has been on enhancing its ability to handle 
categorical features. Additionally, CatBoost has been widely employed in regression problems as well. It 
is applied to forecast daily diffuse horizontal sun radiation [22], determine the isothermal 
compressibility of ionic liquids [23], predict the compressive strength of concrete and enhance 
production processes [24], weather forecasting model for short-term predictions [25], prediction of 
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water evapotranspiration [26], forecast in the medium- and long-term power load [27], estimations of 
sea surface pCO2 in the North Atlantic region [28], estimation of the daily dew point temperature [29], 
predicting the quantity of aboveground biomass (AGB) in forested areas [30], medical [31], addressing 
the issue of short-term voltage stability (STVS) [32]. 

The research proves that CatBoost is a robust machine learning algorithm that demonstrates 
success in classification and regression tasks. A significant research gap is evident during the literature 
review, indicating the need for further investigation in a specific area. It has been noted that much prior 
research has primarily focused on how CatBoost model is performed compared to other machine 
learning algorithms for certain regression predictive tasks. They do not focus on how to improve 
CatBoost itself using feature selection so that it can have optimal performance and predictive power. In 
particular to RFE application for feature selection, there has been limited investigation into the 
implementation of RFE, which heavily relies on the learning algorithm employed as the objective 
function. Only [30] and [31] have concluded that RFE successfully impacts CatBoost performance. 
However, they do not state how RFE works with different learning algorithms as its objective function. 
This gap highlights the necessity for further research to fully comprehend the specifics and 
consequences of using various learning algorithms in the RFE. Furthermore, in terms of applying 
CatBoost-RFE to predictive modeling, no studies have been conducted thus far utilizing CatBoost-RFE as 
a predictive model for exhaust gas emissions in coal-fired boilers. The literature review highlights the 
gaps in knowledge, underscoring the need to investigate these unexplored aspects to progress the field 
and generate novel insights for the existing body of knowledge. 

This study proposes an integrated feature selection using RFE to enhance CatBoost regression 
models. The contribution lies in integrating various RFE combinations with the learning algorithms as 
the objective function, leading to improved model performance. The use of RFE in the preprocessing 
pipeline of CatBoost regression models is not novel. However, this study extends the existing research 
by examining various learning algorithms wrapped within RFE as a black-box model for RFE and 
comparing each impact on CatBoost performance, thereby enhancing the prediction accuracy and 
generalization capabilities of CatBoost regression models. In addition, the novelty lies in using CatBoost-
RFE for boiler exhaust temperature prediction, which has not yet been explored in current studies. The 
proposed RFE feature selection approach offers a novel contribution by addressing the limitations of 
previous studies focusing solely on applying RFE with a single learning algorithm. This study also 
explores the combined impact of outlier detection and removal using iForest [33] and RFE as feature 
selection in providing a more comprehensive and effective preprocessing of CatBoost regression models. 
The novelty lies in the synergistic effect of integrating iForest-RFE to improve CatBoost performance. It 
is expected to provide valuable insights to researchers and practitioners in predictive modeling for 
energy efficiency in coal-fired power plants. 
 
2. METHOD 

2.1.  Data Collection and Preprocessing 

A total of 42 operating and control parameters of a coal-fired power plant, as shown in Table 1, 
have been chosen as predictive variables with 2882 records at typical boiler loading levels ranging from 
40% to 100% during stable process conditions. Data preparation is the initial phase in ensuring data 
quality before it is utilized for model development. In the preparation phase, data cleansing is performed 
to address missing values, duplicates, and anomalies. The initial stage involves addressing the issue of 
missing and duplicate values. In this study, we excluded data entries that had missing or duplicated 
values. To identify data anomalies, we engage in outlier detection using Isolation Forest (iForest) to 
produce high-quality data for modeling. 

2.2. Feature Selection using RFE 

This study uses RFE and several other machine learning algorithms as the learning algorithm or 
estimator. They are Random Forest (RFE-RFR), SVR (RFE-SVR), Decision Tree (RFE-DTR), Lasso 
Regression (RFE-Lasso), and Ridge Regression (RFE-Ridge). During the feature selection stage with RFE, 
we designed that the dataset would undergo three distinct scenarios for the number of features to be 
selected as follows: 

(i) RFE Feature selection with 40 selected features 

(ii) RFE Feature selection with 35 selected features 
(iii) RFE Feature selection with 30 selected features 
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Each of the RFE feature selection scenarios will produce two (2) datasets: a training-validation dataset 
and a test dataset from RFE combinations with five (5) different learning algorithms (estimators). 
Therefore, the total dataset produced from all three (3) schemes will be thirty (30) datasets. In addition, 
there are two (2) datasets: the training-validation dataset and the test dataset as a baseline that has not 
undergone any feature selection process. Finally, in this study, thirty-two (32) datasets are involved in 
the modeling process. 
 

Table 1. Selected operating parameters 

No. Variables Code No. Variables Code 
1 FLUEGAS TEMP X1 22 NO PORT RR R AIR FLW X22 
2 CF A COAL FLW X2 23 ECON INL FW PRESS X23 
3 CF B COAL FLW X3 24 TBN INL MS PRESS X24 
4 CF C COAL FLW X4 25 MAIN STM TEMP X25 
5 CF D COAL FLW X5 26 HRH STM PRESS X26 
6 CF E COAL FLW X6 27 HRH A STM TEMP X27 
7 CF F COAL FLW X7 28 ECON INL FW FLW X28 
8 PULV A OTL TEMP X8 29 FDF A AIR VOLUME FLW X29 
9 PULV B OTL TEMP X9 30 PAF A AIR VOLUME FLW X30 

10 PULV C OTL TEMP X10 31 GEN LOAD OPUT X31 
11 PULV D OTL TEMP X11 32 HSE LOAD X32 
12 PULV E OTL TEMP X12 33 ECON OTL GAS TEMP X33 
13 PULV F OTL TEMP X13 34 RAPH OTL SECA TEMP X34 
14 TOTAL AIR FLW X14 35 PULV A PA FLW X35 
15 PULV A PA TEMP X15 36 PULV B PA FLW X36 
16 PULV B PA TEMP X16 37 PULV C PA FLW X37 
17 PULV C PA TEMP X17 38 PULV D PA FLW X38 
18 PULV D PA TEMP X18 39 PULV E PA FLW X39 
19 PULV E PA TEMP X19 40 PULV F PA FLW X40 
20 PULV F PA TEMP X20 41 COAL FLW DMN X41 
21 NO PORT FR L INL AIR FLW X21 42 TOT COAL FLW SP X42 

 
Since the boiler operation includes a control system designed to respond based on the loading level, 
multiple parameters are expected to show a significant correlation. Therefore, the problem of 
multicollinearity is disregarded. The data processing procedures of the coal-fired boiler significantly 
impact the accuracy of the model's predictions. The wide range of boiler operating parameters can cause 
significant variations in their magnitudes, leading to a decrease in the precision of the model. As a result, 
the model's capacity to accurately represent the relationships between the variables will be diminished. 
Therefore, it is essential to standardize the initial dataset to reduce the influence of variations in 
magnitude within the target parameters before starting the modeling process. The z-score method is 
employed for data pre-processing, as illustrated in equation (1). The Z-score method is a statistical 
technique employed to standardize and compare data points within a dataset. It quantifies the number 
of standard deviations by which a data point deviates from the mean of the dataset. It also determines 
the position of a data point concerning the mean, indicating whether it is above or below the mean and 
by how many standard deviations. A positive Z-score indicates that the data point is positioned above 
the mean, whereas a negative Z-score indicates that it is below the mean. This method facilitates the 
comparison of data points from disparate datasets with varying scales and distributions by 
standardizing them onto a common scale. 
 

𝑧𝑖
∗ =

𝑧𝑖−𝜇

𝜎
  (1) 

 
where 𝑧𝑖

∗represents the parameter value after normalization by the z-score and 𝑧𝑖  is the original process 

data.  is the mean of the sampled data, σ is the standard deviation, and i is the number of samples. 
 

2.3.  Modeling Development 

A crucial stage in machine learning practice is selecting the optimal model from several 
candidates, which involves evaluating each model using an appropriate error measure. Following the 
implementation of RFE with different learning algorithms as the estimator, the regression model is built 
using the CatBoost algorithm with the hyperparameter setting, as shown in Table 2. CatBoost is an open-
source and publicly available implementation of the gradient-boosting decision tree approach, which 
has been improved and perfected. In this study, we employed the 10-fold cross-validation technique for 
each CatBoost model. Following the conclusion of the comprehensive training procedure, we evaluate 
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the models employing distinct test datasets corresponding to each different RFE combination. The 
testing dataset functions as a set of unseen data that will clarify the model's performance during the 
evaluation phase. 

 

Table 2. Applied CatBoost’s Hyperparameter Setting in Orange Data Mining Software. 

No. Hyperparameter Setting Values 
1 No. of trees 300 
2 Learning rate 0.5 
3 Limit depth of Individual trees 6 
4 Fraction of features for each tree 1 
5 Regularization 1.5 

 

2.4. Evaluation Metrics 

The models were evaluated by assessing the coefficient of determination (R2) and root mean squared 
error (RMSE) on distinct test datasets for each combination of feature selection using RFE. Chicco et al. 
[34] have suggested that the R2 may provide more meaningful information than RMSE in the context of 
regression analysis evaluation. Additionally, R2 was proposed as a standardized metric for assessing 
regression analysis in several scientific disciplines. More intuitively, it is possible to express R2 as a 
percentage, while the measures of RMSE have arbitrary ranges. R2 and RMSE can be expressed below in 
equations (2) and (3). 
 

𝑅2 = 1 −
∑ (𝑋𝑖−𝑌𝑖)2𝑚

𝑖=1

∑ (𝑌̅−𝑌𝑖)𝑚
𝑖=1

 (2) 

 

𝑅𝑀𝑆𝐸 = √
1

𝑚
∑ (𝑋𝑖 − 𝑌𝑖)2𝑚

𝑖=1  (3) 

 
where 𝑌̅ is the mean of actual value, m signifies the number of samples in the dataset, 𝑋𝑖 is the predicted 
ith value by the models, and 𝑌𝑖  is the actual ith value. 

 

3. RESULT AND DISCUSSION 

3.1.  Preprocessing Results 

Following the completion of the data cleaning process, we removed duplicates and values that 
were absent from the dataset. After completing the data cleaning procedure, iForest was used to locate 
and remove any statistically significant outliers from the dataset. To enhance the quality of the dataset 
before its incorporation into the models, the contamination limit of 10% was determined. It was 
determined that there were only 2594 entries left in the sample after the outliers were removed. In the 
context of a regression task, the purpose of this study was to conduct an exhaustive investigation to 
determine the impact of RFE on the efficiency of CatBoost.  To enhance the dataset's quality, we carried 
out extensive preprocessing processes before beginning the training of the model, including outlier 
detection using iForest with a threshold of 10% to identify and eliminate any data anomalies.  

3.2. Feature Selection Results 

The raw data contains features as described in Table 1. They are variables of the operating and 
control parameters of a coal-fired power plant recorded in a plant historical database. For this 
regression task, the target feature of the dataset is Flue gas Temperature (X1). During the feature 
selection process, we used Recursive Feature Elimination (RFE) would be employed as the feature 
selection method with various combinations of other learning algorithms as follows: 

(i) Random Forest (RFE-RFR) 

(ii) SVR (RFE-SVR) 

(iii) Decision Tree (RFE-DTR) 

(iv) Lasso Regression (RFE-Lasso) 

(v) Ridge Regression (RFE-Ridge) 

Meanwhile, the number of important features to be selected by RFE as important features follows the 
three scenarios below: 
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(i) Feature selection with 40 selected features 

(ii) RFE Feature selection with 35 selected features 

(iii) RFE Feature selection with 30 selected features 

The feature selection process was conducted using five different methods: Recursive Feature 
Elimination with Support Vector Regression (RFE-SVR), Ridge Regression (RFE-Ridge), Random Forest 
Regression (RFE-RFR), Lasso Regression (RFE-LASSO), and Decision Tree Regression (RFE-DTR). Table 
3 demonstrates the RFE results, where 40 important features were selected for predicting the target 
feature (X1). The features excluded by each RFE method are as follows: X21 was omitted by RFE-SVR, 
X40 by RFE-Ridge, X42 by RFE-RFR, X2 by RFE-Lasso, and X6 by RFE-DTR. This variation in excluded 
features highlights the differing criteria and assumptions inherent in each RFE method, underscoring 
the importance of a comprehensive approach to feature selection. 

 

Table 3. RFE feature selection with 40 selected features 

Feature Selection Selected Features 

RFE-SVR 
X2; X3; X4; X5; X6; X7; X8; X9; X10; X11; X12; X13; X14; X15; X16; X17; X18; X19; X20; X22; X23; X24; 
X25; X26; X27; X28; X29; X30; X31; X32; X33; X34; X35; X36; X37; X38; X39; X40; X41; X42  

RFE-Ridge 
X2; X3; X4; X5; X6; X7; X8; X9; X10; X11; X12; X13; X14; X15; X16; X17; X18; X19; X20; X21; X22; X23; 
X24; X25; X26; X27; X28; X29; X30; X31; X32; X33; X34; X35; X36; X37; X38; X39; X41; X42  

RFE-RFR 
X2; X3; X4; X5; X6; X7; X8; X9; X10; X11; X12; X13; X14; X15; X16; X17; X18; X19; X20; X21; X22; X23; 
X24; X25; X26; X27; X28; X29; X30; X31; X32; X33; X34; X35; X36; X37; X38; X39; X40; X41  

RFE-LASSO 
X3; X4; X5; X6; X7; X8; X9; X10; X11; X12; X13; X14; X15; X16; X17; X18; X19; X20; X21; X22; X23; X24; 
X25; X26; X27; X28; X29; X30; X31; X32; X33; X34; X35; X36; X37; X38; X39; X40; X41; X42  

RFE-DTR 
X2; X3; X4; X5; X7; X8; X9; X10; X11; X12; X13; X14; X15; X16; X17; X18; X19; X20; X21; X22; X23; X24; 
X25; X26; X27; X28; X29; X30; X31; X32; X33; X34; X35; X36; X37; X38; X39; X40; X41; X42  

 
In the refined feature selection process, 35 critical features were identified and are detailed in 

Table 4. This selection was conducted using various Recursive Feature Elimination (RFE) methods 
paired with different regression models, which revealed notable variations in the features deemed non-
essential by each method. Specifically, the RFE-Support Vector Regression (RFE-SVR) excluded features 
X21, X22, X25, X27, X36, and X41. In contrast, the RFE-Ridge Regression (RFE-Ridge) omitted X21, X25, 
X28, and X39 through X41. Meanwhile, the RFE-Random Forest Regression (RFE-RFR) identified X2, X5, 
X6, X26, X37, and X42 as non-important. The RFE-Lasso Regression (RFE-Lasso) excluded a broader 
range, from X2 to X7. Finally, the RFE-Decision Tree Regression (RFE-DTR) found X2, X5, X6, X26, X39, 
and X42 to be non-essential. 

 

Table 4. RFE feature selection with 35 selected features 

Feature Selection Selected Features 

RFE-SVR 
X2; X3; X4; X5; X6; X7; X8; X9; X10; X11; X12; X13; X14; X15; X16; X17; X18; X19; X20; X23; X24; X26; 
X28; X29; X30; X31; X32; X33; X34; X35; X37; X38; X39; X40; X42 

RFE-Ridge 
X2; X3; X4; X5; X6; X7; X8; X9; X10; X11; X12; X13; X14; X15; X16; X17; X18; X19; X20; X22; X23; X24; 
X26; X27; X29; X30; X31; X32; X33; X34; X35; X36; X37; X38; X42 

RFE-RFR 
X3; X4; X7; X8; X9; X10; X11; X12; X13; X14; X15; X16; X17; X18; X19; X20; X21; X22; X23; X24; X25; 
X27; X28; X29; X30; X31; X32; X33; X34; X35; X36; X38; X39; X40; X41 

RFE-LASSO 
X8; X9; X10; X11; X12; X13; X14; X15; X16; X17; X18; X19; X20; X21; X22; X23; X24; X25; X26; X27; X28; 
X29; X30; X31; X32; X33; X34; X35; X36; X37; X38; X39; X40; X41; X42 

RFE-DTR 
X3; X4; X7; X8; X9; X10; X11; X12; X13; X14; X15; X16; X17; X18; X19; X20; X21; X22; X23; X24; X25; 
X27; X28; X29; X30; X31; X32; X33; X34; X35; X36; X37; X38; X40; X41 

 
In the feature selection scenario with 30 selected features, as shown in Table 5, the integration 

of RFE with various regression models highlighted significant differences in the features chosen. The 
RFE with Support Vector Regression (RFE-SVR) identified a comprehensive set of features, excluding 
X8, X21, X22, X25, X26, X27, X28, X32, X36, X40, and X41. These omissions indicate that the remaining 
features are crucial for accurately predicting the target variable within the SVR framework. Similarly, 
the application of RFE with Ridge regression (RFE-Ridge) resulted in a selection of 30 features, omitting 
X8, X21, X22, X25, X26, X27, X28, X32, X39, X40, and X41. The congruence between the RFE-SVR and 
RFE-Ridge selections underscores the robustness of the retained features across different regression 
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algorithms, reaffirming their importance in predictive modeling tasks. Integrating Random Forest 
Regression (RFR) within the RFE framework presented a nuanced selection, excluding X2, X4, X5, X6, 
X23, X26, X37, X38, X39, X40, and X42. This demonstrates the algorithm-specific nuances in feature 
selection, highlighting the distinct predictors deemed relevant by the RFR model. The combination of 
RFE with Lasso regression excluded a range of features from X2 to X12, indicating a different subset of 
predictors as crucial within the Lasso framework. Lastly, RFE with Decision Tree Regression (RFE-DTR) 
omitted features X3 to X7, X26, X31, X36, X39, X40, and X42, further showcasing the unique selection 
criteria of the Decision Tree model. 

 

Table 5. RFE feature selection with 30 selected features 

Feature Selection Selected Features 

RFE-SVR 
X2; X3; X4; X5; X6; X7; X9; X10; X11; X12; X13; X14; X15; X16; X17; X18; X19; X20; X23; X24; X29; X30; 
X31; X33; X34; X35; X37; X38; X39; X42 

RFE-Ridge 
X2; X3; X4; X5; X6; X7; X9; X10; X11; X12; X13; X14; X15; X16; X17; X18; X19; X20; X23; X24; X29; X30; 
X31; X33; X34; X35; X36; X37; X38; X42 

RFE-RFR 
X3; X7; X8; X9; X10; X11; X12; X13; X14; X15; X16; X17; X18; X19; X20; X21; X22; X24; X25; X27; X28; 
X29; X30; X31; X32; X33; X34; X35; X36; X41 

RFE-LASSO 
X13; X14; X15; X16; X17; X18; X19; X20; X21; X22; X23; X24; X25; X26; X27; X28; X29; X30; X31; X32; 
X33; X34; X35; X36; X37; X38; X39; X40; X41; X42 

RFE-DTR 
X3; X8; X9; X10; X11; X12; X13; X14; X15; X16; X17; X18; X19; X20; X21; X22; X23; X24; X25; X27; X28; 
X29; X30; X32; X33; X34; X35; X37; X38; X41 

 
These findings highlight the importance of using multiple RFE methods to capture a broad 

spectrum of important features, ensuring a comprehensive and robust feature selection process for 
predictive modeling. 

3.3.  Baseline Model Performance 

Throughout this study, we constructed several CatBoost models using 10-fold cross-validation. 
These models are constructed based on the RFE combination applied, which was RFE with various 
learning algorithms. Additionally, we utilized separate datasets for training and testing. 

 

Table 6. Baseline model performance (without feature selection) 

Training Time (sec.) RMSE R2 

10.482 1.543 0.925 

 
The baseline model uses a preprocessed dataset where there is no RFE feature selection is 

applied. It is identical CatBoost model using same hyperparameter in Table 2. The baseline CatBoost 
model’s performance which is shown in Table 6, served as the point of reference for assessing RFE-
improved CatBoost models. The time required for training this model was 10.482 seconds, the RMSE 
was 1.543, and the R2 score was 0.925. 

3.4.  Performance Evaluation of CatBoost Models 

3.4.1.  Analysis of Feature Selection Impact 

In this study, we analyze the impact of RFE in combination with Random Forest, SVR, Decision 
Tree, Lasso Regression, and Ridge Regression on the time required for training and the accuracy of 
predictions. A comprehensive analysis of the CatBoost algorithm is carried out with the purpose of 
analyzing the influence that several different feature selection methods have on the effectiveness of the 
model. The research investigated the effects of different RFE techniques on the time required for 
training, RMSE, and R2 score gains compared to the baseline dataset, which did not include feature 
selection. Table 6 shows the result of changes in training time, RMSE, and R2, while Table 7 shows the 
result of modeling using various RFE feature selection scenarios. 

 

Table 7. Model improvement percentage at various feature selection combinations 

Feature Selection Selected Features Training Time (sec.) RMSE R2 

RFE-RFR 40 42.8 4.731 0.757 
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Feature Selection Selected Features Training Time (sec.) RMSE R2 

RFE-SVR 40 -4.1 4.083 0.649 

RFE-DTR 40 43.6 3.564 0.649 

RFE-LASSO 40 -44.3 2.139 0.432 

RFE-RIDGE 40 -150.8 0.648 0.108 

RFE-RFR 35 48.6 8.231 1.297 

RFE-DTR 35 48.4 4.083 0.649 

RFE-RIDGE 35 7.1 2.787 0.432 

RFE-SVR 35 12.5 2.398 0.432 

RFE-LASSO 35 13.7 0.518 0.108 

RFE-LASSO 30 1.0 7.907 1.297 

RFE-DTR 30 54.0 6.740 1.081 

RFE-SVR 30 21.4 3.046 0.541 

RFE-RFR 30 53.0 2.852 0.541 

RFE-RIDGE 30 18.1 2.528 0.432 

 
When the experiment was carried out using RFE with a selection of 40 features. It is noteworthy 

that the combination of RFE-RFR and CatBoost brought about a considerable decrease in the amount of 
time required for training by 42.8%. Both improvements were negligible. The RFE-DTR likewise 
displayed good results, with a reduction in training time of 43.6%, a substantial drop in RMSE by 3.6%, 
and an increase in R2 by 0.65%. These findings are comparable to those that were seen in the previous 
approach.  

In contrast, the RFE-LASSO, RFE-SVR, and RFE-Ridge did not indicate any improvement in the 
time required for training. In particular, the RFE-Ridge model had a training period that was 150% 
longer than the baseline model. In the experiment that used 35 distinct features, the results showed clear 
trends across a variety of feature selection methods. Notably, using RFE with Random Forest Regression 
in conjunction with CatBoost results in a decrease of 48.6% in the amount of time necessary for training. 
At the same time, it is associated with a substantial improvement in RMSE by 8.2% and a significant 
increase in R2 by 1.3%. Applying RFE with Decision Tree Regression reveals a considerable reduction in 
the length of the training process, equivalent to a drop of 48.41%. This is similar to the previous example. 
This decrease in training time is complemented by good results in both RMSE, which displays an increase 
of 4.1%, and R2, which reveals an improvement of 0.6%. Both of these improvements are a result of 
better training. The other three RFE versions, which are referred to as RFE-SVR, RFE-Lasso, and RFE-
Ridge, exhibited slight improvements in terms of training time, as well as in terms of assessment metrics 
such as RMSE and R2 values. The results of our last experiment, which used RFE with a selection of 30 
features and its influence on the CatBoost model's performance, illustrate considerable differences 
between the various strategies for selecting features. A significant improvement of 53.9% in the time 
required for the training process is achieved by the combination of CatBoost and RFE-DTR, which uses 
Decision Tree Regression. RMSE and R2 values have seen significant increases, with the former 
increasing by 6.7% and the latter by 1.1%, respectively. 

Out of the three different scenarios that were taken into consideration for feature selection, it 
was discovered that RFE-RFR, which had 35 features that were chosen, showed the most promising 
outcomes for the CatBoost model and demonstrated the most optimum trade-off between the amount 
of time needed for training and the gains in RMSE score. When compared to the baseline, the 
experimental findings show that the amount of time spent training has decreased by 48.6%, the RMSE 
score has improved by 8.2%, and the R2 score has improved by 1.3%. 

 
3.4.2.  Analysis of CatBoost Performance 

From the point of view of model performance, three CatBoost model candidates have shown 
optimal results in terms of R2 and RMSE scores, as well as training length. As seen in Table 7, with a low 
RMSE score of 1.416 and an excellent R2 score of 0.937, the RFE-RFR, which used 35 features, had the 
most ideal performance. It is important to note that the training period for this specific model, which is 
5.391 seconds, is relatively short compared to the baseline. Compared to the baseline, the RFE-LASSO 
technique, which uses a 30-feature selection, achieved the second-greatest degree of performance with 
an RMSE score of 1.421 and an R2 score of 0.937. However, the training length of the model is 10.4 
seconds, which is much longer than the training period of the RFE-RFR model on average. 
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Table 8. The result of modeling with various RFE combinations 

Feature Selection 
Selected 
Features 

Training Time (sec.) RMSE R2 

RFE-RFR 40 5.993 1.470 0.932 
RFE-SVR 40 10.91 1.480 0.931 
RFE-DTR 40 5.917 1.488 0.931 

RFE-LASSO 40 15.13 1.510 0.929 
RFE-RIDGE 40 26.29 1.533 0.926 

RFE-RFR 35 5.391 1.416 0.937 
RFE-DTR 35 5.408 1.480 0.931 

RFE-RIDGE 35 9.733 1.500 0.929 
RFE-SVR 35 9.171 1.506 0.929 

RFE-LASSO 35 9.051 1.535 0.926 
RFE-LASSO 30 10.38 1.421 0.937 

RFE-DTR 30 4.826 1.439 0.935 
RFE-SVR 30 8.236 1.496 0.930 
RFE-RFR 30 4.924 1.499 0.930 

RFE-RIDGE 30 8.582 1.504 0.929 

 
Finally, the RFE-DTR approach, which used a collection of 30-feature, demonstrated the third 

greatest degree of performance, as seen in Table 8. This was shown by an RMSE value of 1.439 and a 
significantly raised R2 value of 0.935, the latter of which was much higher than the baseline. Additionally, 
it is important to point out that the model being considered has the shortest training time, which is 4.83. 
This makes it more efficient than both RFE-RFR and RFE-LASSO. Although there were marginal 
improvements in training durations for all feature selection approaches, the RFE-RFR approach with 35 
features showed notable potential by exhibiting improved prediction accuracy while maintaining 
reasonable training efficiency. The results highlight the significance of carefully choosing feature 
selection methods that align with the demands of the predictive modeling objective while considering 
the balance between the time required for training and the performance of the model. 

 

Table 9. Applied hyperparameters for each model 

Model Hyperparameter Setting 

CATB No. of trees: 300, learning rate: 0.5, max. depth. Ind. Trees: 6, fraction of features for each tree: 1 

XGB 
No. of trees: 300, learning rate: 0.5, regularization:1, max. depth. Ind. Trees: 6, fraction of features 
for each tree/level/split: 1 

GBM 
No. of trees: 300, learning rate: 0.5, max. depth. Ind. Trees: 6, smallest subset: 2, fraction of training 
instances: 1 

ADB No. of estimator: 300, learning rate: 0.5, regression loss function: linear 

ANN Neurons in hidden layers: 64/128, Activation: ReLu, Solver: Adam, max iter: 300 

 

Table 10. Comparison of CatBoost performance to other well-known regression models. 

Regression Model Training Time (sec.) RMSE R2 

CATB 5.391 1.416 0.937 

XGB 6.428 1.587 0.921 

GBM 72.815 1.634 0.916 

ADB 91.703 1.722 0.907 

ANN 26.897 4.524 0.358 

 
 
3.4.3.  Comparative Analysis 

To demonstrate the effectiveness of feature selection and enhancement in the performance of 
CatBoost, we compare the CatBoost model constructed using RFE and Random Forest Regression with 
other widely recognized machine learning techniques. In comparing CatBoost with various regression 
models, we set specific hyperparameter configurations, detailed in Table 9. The hyperparameter setup 
was implemented using the Orange Data Mining software for each predictor. The regression models 
being examined exhibit an identical feature selection scenario, specifically the RFE combined with 
Random Forest Regression as the learning algorithm, with 35 features. As indicated in Table 10, it is 
apparent that CatBoost demonstrates a notably improved performance compared to other algorithms 
concerning RMSE and R2 values. CatBoost demonstrated superior performance to other boosting 
algorithms and artificial neural networks (ANN) across many performance measures, including training 

https://issn.brin.go.id/terbit/detail/1466480524
https://issn.brin.go.id/terbit/detail/1464049910


JOIN | Volume 9 No. 2 | December 2024: 169-178  

 

 

 177 
 

time, RMSE, and R2 scores. The findings suggest that CatBoost is a very appropriate machine learning 
technique for regression tasks involving datasets of limited size. 
 
4. CONCLUSION 

This study conducted a comprehensive experimental investigation to enhance the performance 
of CatBoost for regression tasks. By integrating Recursive Feature Elimination (RFE) with various 
learning algorithms, including Decision Tree, Random Forest, Support Vector Regression (SVR), LASSO 
regression, and Ridge regression, alongside outlier detection and removal using iForest, a more robust 
preprocessing approach was achieved. Notably, when Random Forest Regression was utilized within the 
RFE-iForest framework, significant enhancements in CatBoost models were observed. 

The results demonstrate the superiority of CatBoost-RFE with Random Forest regressor over 
other well-known machine learning algorithms such as AdaBoost, XGBoost, Gradient Boosting, and 
Artificial Neural Networks (ANN). Specifically, the CatBoost-RFE with Random Forest regressor 
exhibited the highest level of predictive capability, particularly in predicting boiler flue gas exit 
temperature in coal-fired plants. 

Future research endeavors could explore automated search techniques for RFE to determine 
the optimal number of features, especially when dealing with larger datasets. 
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