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CatBoost is a powerful machine learning algorithm capable of
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study examines the CatBoost optimization for regression tasks by using
Recursive Feature Elimination (RFE) for feature selection in
combination with several regression algorithm. Furthermore, an
Isolation Forest algorithm is employed at preprocessing to identify and
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eliminate outliers from the dataset. The experiment is conducted by

Keywords: comparing the CatBoost regression model's performances with and

CatBoost without the use of RFE feature selection. The outcomes of the

Feature Selection experiments indicate that CatBoost with RFE, which selects features

RFE using Random Forests, performs better than the baseline model without
feature selection. CatBoost-RFE outperformed the baseline with notable
gains of over 48.6% in training time, 8.2% in RMSE score, and 1.3% in
R? score. Furthermore, compared to AdaBoost, Gradient Boosting,
XGBoost, and artificial neural networks (ANN), it demonstrated better
prediction accuracy. The CatBoost improvement has a substantial
implication for predicting the exhaust temperature in a coal-fired power
plant.
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1. INTRODUCTION

Decision-tree-based methods have been widely recognized for their effectiveness in handling
large datasets, with the added benefit of significantly reducing training convergence time [1]. The trees
within the forest exhibit distinct characteristics, so forming a diverse assemblage that together
outperforms any individual tree. One of the algorithms discussed in the literature is the CatBoost
algorithm [2]-[3], which represents an improved iteration of the gradient-boosting decision tree method
and employs binary decision trees as its foundational predictors. CatBoost -an algorithm based on
decision trees - demonstrates high suitability for machine learning problems involving categorical and
heterogeneous data [4]. As a result, CatBoost has been widely utilized in numerous research works to
address categorization issues. The utilization of this technique is observed in various disciplines,
including finance [5]-[6], medical [7]-[8], failure prediction [9], fraud detection [10]-[13], psychology
[14], anomaly detection [15], cyber-security [16], material engineering [17], biochemistry [18]-[19],
biology [20]-[21], and numerous other domains.

The primary focus of the development of CatBoost has been on enhancing its ability to handle
categorical features. Additionally, CatBoost has been widely employed in regression problems as well. It
is applied to forecast daily diffuse horizontal sun radiation [22], determine the isothermal
compressibility of ionic liquids [23], predict the compressive strength of concrete and enhance
production processes [24], weather forecasting model for short-term predictions [25], prediction of
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water evapotranspiration [26], forecast in the medium- and long-term power load [27], estimations of
sea surface pCO2 in the North Atlantic region [28], estimation of the daily dew point temperature [29],
predicting the quantity of aboveground biomass (AGB) in forested areas [30], medical [31], addressing
the issue of short-term voltage stability (STVS) [32].

The research proves that CatBoost is a robust machine learning algorithm that demonstrates
success in classification and regression tasks. A significant research gap is evident during the literature
review, indicating the need for further investigation in a specific area. It has been noted that much prior
research has primarily focused on how CatBoost model is performed compared to other machine
learning algorithms for certain regression predictive tasks. They do not focus on how to improve
CatBoost itself using feature selection so that it can have optimal performance and predictive power. In
particular to RFE application for feature selection, there has been limited investigation into the
implementation of RFE, which heavily relies on the learning algorithm employed as the objective
function. Only [30] and [31] have concluded that RFE successfully impacts CatBoost performance.
However, they do not state how RFE works with different learning algorithms as its objective function.
This gap highlights the necessity for further research to fully comprehend the specifics and
consequences of using various learning algorithms in the RFE. Furthermore, in terms of applying
CatBoost-RFE to predictive modeling, no studies have been conducted thus far utilizing CatBoost-RFE as
a predictive model for exhaust gas emissions in coal-fired boilers. The literature review highlights the
gaps in knowledge, underscoring the need to investigate these unexplored aspects to progress the field
and generate novel insights for the existing body of knowledge.

This study proposes an integrated feature selection using RFE to enhance CatBoost regression
models. The contribution lies in integrating various RFE combinations with the learning algorithms as
the objective function, leading to improved model performance. The use of RFE in the preprocessing
pipeline of CatBoost regression models is not novel. However, this study extends the existing research
by examining various learning algorithms wrapped within RFE as a black-box model for RFE and
comparing each impact on CatBoost performance, thereby enhancing the prediction accuracy and
generalization capabilities of CatBoost regression models. In addition, the novelty lies in using CatBoost-
RFE for boiler exhaust temperature prediction, which has not yet been explored in current studies. The
proposed RFE feature selection approach offers a novel contribution by addressing the limitations of
previous studies focusing solely on applying RFE with a single learning algorithm. This study also
explores the combined impact of outlier detection and removal using iForest [33] and RFE as feature
selection in providing a more comprehensive and effective preprocessing of CatBoost regression models.
The novelty lies in the synergistic effect of integrating iForest-RFE to improve CatBoost performance. It
is expected to provide valuable insights to researchers and practitioners in predictive modeling for
energy efficiency in coal-fired power plants.

2. METHOD

2.1. Data Collection and Preprocessing

A total of 42 operating and control parameters of a coal-fired power plant, as shown in Table 1,
have been chosen as predictive variables with 2882 records at typical boiler loading levels ranging from
40% to 100% during stable process conditions. Data preparation is the initial phase in ensuring data
quality before it is utilized for model development. In the preparation phase, data cleansing is performed
to address missing values, duplicates, and anomalies. The initial stage involves addressing the issue of
missing and duplicate values. In this study, we excluded data entries that had missing or duplicated
values. To identify data anomalies, we engage in outlier detection using Isolation Forest (iForest) to
produce high-quality data for modeling.

2.2. Feature Selection using RFE

This study uses RFE and several other machine learning algorithms as the learning algorithm or
estimator. They are Random Forest (RFE-RFR), SVR (RFE-SVR), Decision Tree (RFE-DTR), Lasso
Regression (RFE-Lasso), and Ridge Regression (RFE-Ridge). During the feature selection stage with RFE,
we designed that the dataset would undergo three distinct scenarios for the number of features to be
selected as follows:

(i) RFE Feature selection with 40 selected features
(ii) RFE Feature selection with 35 selected features
(iii) RFE Feature selection with 30 selected features
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Each of the RFE feature selection scenarios will produce two (2) datasets: a training-validation dataset
and a test dataset from RFE combinations with five (5) different learning algorithms (estimators).
Therefore, the total dataset produced from all three (3) schemes will be thirty (30) datasets. In addition,
there are two (2) datasets: the training-validation dataset and the test dataset as a baseline that has not
undergone any feature selection process. Finally, in this study, thirty-two (32) datasets are involved in
the modeling process.

Table 1. Selected operating parameters

No. Variables Code No. Variables Code
1 FLUEGAS TEMP X1 22 NO PORT RR R AIR FLW X22
2 CF A COAL FLW X2 23 ECON INL FW PRESS X23
3 CF B COAL FLW X3 24 TBN INL MS PRESS X24
4 CF C COAL FLW X4 25 MAIN STM TEMP X25
5 CF D COAL FLW X5 26 HRH STM PRESS X26
6 CF E COAL FLW X6 27 HRH A STM TEMP X27
7 CF F COAL FLW X7 28 ECON INL FW FLW X28
8 PULV A OTL TEMP X8 29 FDF A AIR VOLUME FLW X29
9 PULV B OTL TEMP X9 30 PAF A AIR VOLUME FLW X30

10 PULV C OTL TEMP X10 31 GEN LOAD OPUT X31
11 PULV D OTL TEMP X11 32 HSE LOAD X32
12 PULV E OTL TEMP X12 33 ECON OTL GAS TEMP X33
13 PULV F OTL TEMP X13 34 RAPH OTL SECA TEMP X34
14 TOTAL AIR FLW X14 35 PULV A PA FLW X35
15 PULV A PA TEMP X15 36 PULV B PA FLW X36
16 PULV B PA TEMP X16 37 PULV C PA FLW X37
17 PULV C PA TEMP X17 38 PULV D PA FLW X38
18 PULV D PA TEMP X18 39 PULV E PA FLW X39
19 PULV E PA TEMP X19 40 PULV F PA FLW X40

20 PULV F PA TEMP X20 41 COAL FLW DMN X41

21 NO PORT FR L INL AIR FLW X21 42 TOT COAL FLW SP X42

Since the boiler operation includes a control system designed to respond based on the loading level,
multiple parameters are expected to show a significant correlation. Therefore, the problem of
multicollinearity is disregarded. The data processing procedures of the coal-fired boiler significantly
impact the accuracy of the model's predictions. The wide range of boiler operating parameters can cause
significant variations in their magnitudes, leading to a decrease in the precision of the model. As a result,
the model's capacity to accurately represent the relationships between the variables will be diminished.
Therefore, it is essential to standardize the initial dataset to reduce the influence of variations in
magnitude within the target parameters before starting the modeling process. The z-score method is
employed for data pre-processing, as illustrated in equation (1). The Z-score method is a statistical
technique employed to standardize and compare data points within a dataset. It quantifies the number
of standard deviations by which a data point deviates from the mean of the dataset. It also determines
the position of a data point concerning the mean, indicating whether it is above or below the mean and
by how many standard deviations. A positive Z-score indicates that the data point is positioned above
the mean, whereas a negative Z-score indicates that it is below the mean. This method facilitates the
comparison of data points from disparate datasets with varying scales and distributions by
standardizing them onto a common scale.

7 =2k (D

where z;represents the parameter value after normalization by the z-score and z; is the original process
data. x is the mean of the sampled data, o is the standard deviation, and i is the number of samples.

2.3. Modeling Development

A crucial stage in machine learning practice is selecting the optimal model from several
candidates, which involves evaluating each model using an appropriate error measure. Following the
implementation of RFE with different learning algorithms as the estimator, the regression model is built
using the CatBoost algorithm with the hyperparameter setting, as shown in Table 2. CatBoost is an open-
source and publicly available implementation of the gradient-boosting decision tree approach, which
has been improved and perfected. In this study, we employed the 10-fold cross-validation technique for
each CatBoost model. Following the conclusion of the comprehensive training procedure, we evaluate
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the models employing distinct test datasets corresponding to each different RFE combination. The
testing dataset functions as a set of unseen data that will clarify the model's performance during the
evaluation phase.

Table 2. Applied CatBoost’s Hyperparameter Setting in Orange Data Mining Software.

No. Hyperparameter Setting Values
1 No. of trees 300
2 Learning rate 0.5
3 Limit depth of Individual trees 6
4 Fraction of features for each tree 1
5 Regularization 1.5

2.4. Evaluation Metrics

The models were evaluated by assessing the coefficient of determination (R%) and root mean squared
error (RMSE) on distinct test datasets for each combination of feature selection using RFE. Chicco et al.
[34] have suggested that the R2 may provide more meaningful information than RMSE in the context of
regression analysis evaluation. Additionally, R2 was proposed as a standardized metric for assessing
regression analysis in several scientific disciplines. More intuitively, it is possible to express R2as a
percentage, while the measures of RMSE have arbitrary ranges. R2 and RMSE can be expressed below in
equations (2) and (3).

Re=1 I (=Y (@)
RMSE = [~ 37, (X; — Y;)? 3)

where Y is the mean of actual value, m signifies the number of samples in the dataset, X; is the predicted
ith value by the models, and Y; is the actual ith value.

3. RESULT AND DISCUSSION

3.1. Preprocessing Results

Following the completion of the data cleaning process, we removed duplicates and values that
were absent from the dataset. After completing the data cleaning procedure, iForest was used to locate
and remove any statistically significant outliers from the dataset. To enhance the quality of the dataset
before its incorporation into the models, the contamination limit of 10% was determined. It was
determined that there were only 2594 entries left in the sample after the outliers were removed. In the
context of a regression task, the purpose of this study was to conduct an exhaustive investigation to
determine the impact of RFE on the efficiency of CatBoost. To enhance the dataset's quality, we carried
out extensive preprocessing processes before beginning the training of the model, including outlier
detection using iForest with a threshold of 10% to identify and eliminate any data anomalies.

3.2. Feature Selection Results
The raw data contains features as described in Table 1. They are variables of the operating and

control parameters of a coal-fired power plant recorded in a plant historical database. For this
regression task, the target feature of the dataset is Flue gas Temperature (X1). During the feature
selection process, we used Recursive Feature Elimination (RFE) would be employed as the feature
selection method with various combinations of other learning algorithms as follows:

(i) Random Forest (RFE-RFR)

(ii) SVR (RFE-SVR)

(iii) Decision Tree (RFE-DTR)

(iv) Lasso Regression (RFE-Lasso)

(v) Ridge Regression (RFE-Ridge)
Meanwhile, the number of important features to be selected by RFE as important features follows the
three scenarios below:
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(i) Feature selection with 40 selected features

(ii) RFE Feature selection with 35 selected features

(iii) RFE Feature selection with 30 selected features

The feature selection process was conducted using five different methods: Recursive Feature

Elimination with Support Vector Regression (RFE-SVR), Ridge Regression (RFE-Ridge), Random Forest
Regression (RFE-RFR), Lasso Regression (RFE-LASSO), and Decision Tree Regression (RFE-DTR). Table
3 demonstrates the RFE results, where 40 important features were selected for predicting the target
feature (X1). The features excluded by each RFE method are as follows: X21 was omitted by RFE-SVR,
X40 by RFE-Ridge, X42 by RFE-RFR, X2 by RFE-Lasso, and X6 by RFE-DTR. This variation in excluded
features highlights the differing criteria and assumptions inherent in each RFE method, underscoring
the importance of a comprehensive approach to feature selection.

Table 3. RFE feature selection with 40 selected features

Feature Selection Selected Features
X2; X3; X4; X5; X6; X7; X8; X9; X10; X11; X12; X13; X14; X15; X16; X17; X18; X19; X20; X22; X23; X24;

RFE-SVR X25; X26; X27; X28; X29; X30; X31; X32; X33; X34; X35; X36; X37; X38; X39; X40; X41; X42
RFE-Ridge X2; X3; X4; X5; X6; X7; X8; X9; X10; X11; X12; X13; X14; X15; X16; X17; X18; X19; X20; X21; X22; X23;
8 X24; X25; X26; X27; X28; X29; X30; X31; X32; X33; X34; X35; X36; X37; X38; X39; X41; X42
RFE-RFR X2; X3; X4; X5; X6; X7; X8; X9; X10; X11; X12; X13; X14; X15; X16; X17; X18; X19; X20; X21; X22; X23;
X24; X25;X26; X27; X28; X29; X30; X31; X32; X33; X34; X35; X36; X37; X38; X39; X40; X41
RFE-LASSO X3; X4; X5; X6; X7; X8; X9; X10; X11; X12; X13; X14; X15; X16; X17; X18; X19; X20; X21; X22; X23; X24;
X25; X26; X27; X28; X29; X30; X31; X32; X33; X34; X35; X36; X37; X38; X39; X40; X41; X42
RFE-DTR X2; X3; X4; X5; X7; X8; X9; X10; X11; X12; X13; X14; X15; X16; X17; X18; X19; X20; X21; X22; X23; X24;

X25;X26; X27; X28; X29; X30; X31; X32; X33; X34; X35; X36; X37; X38; X39; X40; X41; X42

In the refined feature selection process, 35 critical features were identified and are detailed in
Table 4. This selection was conducted using various Recursive Feature Elimination (RFE) methods
paired with different regression models, which revealed notable variations in the features deemed non-
essential by each method. Specifically, the RFE-Support Vector Regression (RFE-SVR) excluded features
X21, X22, X25,X27, X36, and X41. In contrast, the RFE-Ridge Regression (RFE-Ridge) omitted X21, X25,
X28, and X39 through X41. Meanwhile, the RFE-Random Forest Regression (RFE-RFR) identified X2, X5,
X6, X26, X37, and X42 as non-important. The RFE-Lasso Regression (RFE-Lasso) excluded a broader
range, from X2 to X7. Finally, the RFE-Decision Tree Regression (RFE-DTR) found X2, X5, X6, X26, X39,
and X42 to be non-essential.

Table 4. RFE feature selection with 35 selected features

Feature Selection Selected Features

X2; X3; X4; X5; X6; X7; X8; X9; X10; X11; X12; X13; X14; X15; X16; X17; X18; X19; X20; X23; X24; X26;

RFE-SVR X28; X29; X30; X31; X32; X33; X34; X35; X37; X38; X39; X40; X42
RFE-Rid X2; X3; X4; X5; X6; X7; X8; X9; X10; X11; X12; X13; X14; X15; X16; X17; X18; X19; X20; X22; X23; X24;
1dge X26; X27; X29; X30; X31; X32; X33; X34; X35; X36; X37; X38; X42
RFE-RFR X3; X4; X7; X8; X9; X10; X11; X12; X13; X14; X15; X16; X17; X18; X19; X20; X21; X22; X23; X24; X25;
X27; X28; X29; X30; X31; X32; X33; X34; X35; X36; X38; X39; X40; X41
RFE-LASSO X8;X9; X10; X11; X12; X13; X14; X15; X16; X17; X18; X19; X20; X21; X22; X23; X24; X25; X26; X27; X28;
X29; X30; X31; X32; X33; X34; X35; X36; X37; X38; X39; X40; X41; X42
RFE-DTR X3; X4; X7; X8; X9; X10; X11; X12; X13; X14; X15; X16; X17; X18; X19; X20; X21; X22; X23; X24; X25;

X27;X28; X29; X30; X31; X32; X33; X34; X35; X36; X37; X38; X40; X41

In the feature selection scenario with 30 selected features, as shown in Table 5, the integration
of RFE with various regression models highlighted significant differences in the features chosen. The
RFE with Support Vector Regression (RFE-SVR) identified a comprehensive set of features, excluding
X8, X21, X22, X25, X26, X27, X28, X32, X36, X40, and X41. These omissions indicate that the remaining
features are crucial for accurately predicting the target variable within the SVR framework. Similarly,
the application of RFE with Ridge regression (RFE-Ridge) resulted in a selection of 30 features, omitting
X8, X21, X22, X25, X26, X27, X28, X32, X39, X40, and X41. The congruence between the RFE-SVR and
RFE-Ridge selections underscores the robustness of the retained features across different regression
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algorithms, reaffirming their importance in predictive modeling tasks. Integrating Random Forest
Regression (RFR) within the RFE framework presented a nuanced selection, excluding X2, X4, X5, X6,
X23, X26, X37, X38, X39, X40, and X42. This demonstrates the algorithm-specific nuances in feature
selection, highlighting the distinct predictors deemed relevant by the RFR model. The combination of
RFE with Lasso regression excluded a range of features from X2 to X12, indicating a different subset of
predictors as crucial within the Lasso framework. Lastly, RFE with Decision Tree Regression (RFE-DTR)
omitted features X3 to X7, X26, X31, X36, X39, X40, and X42, further showcasing the unique selection
criteria of the Decision Tree model.

Table 5. RFE feature selection with 30 selected features

Feature Selection Selected Features
X2; X3; X4; X5; X6; X7; X9; X10; X11; X12; X13; X14; X15; X16; X17; X18; X19; X20; X23; X24; X29; X30;

RFE-SVR X31; X33; X34; X35; X37; X38; X39; X42
RFE-Ridge X2; X3; X4; X5; X6; X7; X9; X10; X11; X12; X13; X14; X15; X16; X17; X18; X19; X20; X23; X24; X29; X30;
8 X31; X33; X34; X35; X36; X37; X38; X42
RFE-RFR X3; X7; X8; X9; X10; X11; X12; X13; X14; X15; X16; X17; X18; X19; X20; X21; X22; X24; X25; X27; X28;
X29; X30; X31; X32; X33; X34; X35; X36; X41
RFE-LASSO X13; X14; X15; X16; X17; X18; X19; X20; X21; X22; X23; X24; X25; X26; X27; X28; X29; X30; X31; X32;
X33; X34; X35; X36; X37; X38; X39; X40; X41; X42
RFE-DTR X3; X8; X9; X10; X11; X12; X13; X14; X15; X16; X17; X18; X19; X20; X21; X22; X23; X24; X25; X27; X28;

X29; X30; X32; X33; X34; X35; X37; X38; X41

These findings highlight the importance of using multiple RFE methods to capture a broad
spectrum of important features, ensuring a comprehensive and robust feature selection process for
predictive modeling.

3.3. Baseline Model Performance

Throughout this study, we constructed several CatBoost models using 10-fold cross-validation.
These models are constructed based on the RFE combination applied, which was RFE with various
learning algorithms. Additionally, we utilized separate datasets for training and testing.

Table 6. Baseline model performance (without feature selection)

Training Time (sec.) RMSE R?

10.482 1.543 0.925

The baseline model uses a preprocessed dataset where there is no RFE feature selection is
applied. It is identical CatBoost model using same hyperparameter in Table 2. The baseline CatBoost
model’s performance which is shown in Table 6, served as the point of reference for assessing RFE-
improved CatBoost models. The time required for training this model was 10.482 seconds, the RMSE
was 1.543, and the R2 score was 0.925.

3.4. Performance Evaluation of CatBoost Models
3.4.1. Analysis of Feature Selection Impact

In this study, we analyze the impact of RFE in combination with Random Forest, SVR, Decision
Tree, Lasso Regression, and Ridge Regression on the time required for training and the accuracy of
predictions. A comprehensive analysis of the CatBoost algorithm is carried out with the purpose of
analyzing the influence that several different feature selection methods have on the effectiveness of the
model. The research investigated the effects of different RFE techniques on the time required for
training, RMSE, and R2 score gains compared to the baseline dataset, which did not include feature
selection. Table 6 shows the result of changes in training time, RMSE, and R?, while Table 7 shows the
result of modeling using various RFE feature selection scenarios.

Table 7. Model improvement percentage at various feature selection combinations

Feature Selection Selected Features Training Time (sec.) RMSE R2
RFE-RFR 40 42.8 4.731 0.757
CatBoost Optimization Using Recursive Feature Elimination 174
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Feature Selection Selected Features Training Time (sec.) RMSE R2
RFE-SVR 40 -4.1 4.083 0.649
RFE-DTR 40 43.6 3.564 0.649

RFE-LASSO 40 -44.3 2.139 0.432
RFE-RIDGE 40 -150.8 0.648 0.108
RFE-RFR 35 48.6 8.231 1.297
RFE-DTR 35 48.4 4.083 0.649
RFE-RIDGE 35 7.1 2.787 0.432
RFE-SVR 35 12.5 2.398 0.432
RFE-LASSO 35 13.7 0.518 0.108
RFE-LASSO 30 1.0 7.907 1.297
RFE-DTR 30 54.0 6.740 1.081
RFE-SVR 30 21.4 3.046 0.541
RFE-RFR 30 53.0 2.852 0.541
RFE-RIDGE 30 18.1 2.528 0.432

When the experiment was carried out using RFE with a selection of 40 features. It is noteworthy
that the combination of RFE-RFR and CatBoost brought about a considerable decrease in the amount of
time required for training by 42.8%. Both improvements were negligible. The RFE-DTR likewise
displayed good results, with a reduction in training time of 43.6%, a substantial drop in RMSE by 3.6%,
and an increase in R2 by 0.65%. These findings are comparable to those that were seen in the previous
approach.

In contrast, the RFE-LASSO, RFE-SVR, and RFE-Ridge did not indicate any improvement in the
time required for training. In particular, the RFE-Ridge model had a training period that was 150%
longer than the baseline model. In the experiment that used 35 distinct features, the results showed clear
trends across a variety of feature selection methods. Notably, using RFE with Random Forest Regression
in conjunction with CatBoost results in a decrease of 48.6% in the amount of time necessary for training.
At the same time, it is associated with a substantial improvement in RMSE by 8.2% and a significant
increase in R? by 1.3%. Applying RFE with Decision Tree Regression reveals a considerable reduction in
the length of the training process, equivalent to a drop of 48.41%. This is similar to the previous example.
This decrease in training time is complemented by good results in both RMSE, which displays an increase
of 4.1%, and R?, which reveals an improvement of 0.6%. Both of these improvements are a result of
better training. The other three RFE versions, which are referred to as RFE-SVR, RFE-Lasso, and RFE-
Ridge, exhibited slight improvements in terms of training time, as well as in terms of assessment metrics
such as RMSE and R2? values. The results of our last experiment, which used RFE with a selection of 30
features and its influence on the CatBoost model's performance, illustrate considerable differences
between the various strategies for selecting features. A significant improvement of 53.9% in the time
required for the training process is achieved by the combination of CatBoost and RFE-DTR, which uses
Decision Tree Regression. RMSE and RZ values have seen significant increases, with the former
increasing by 6.7% and the latter by 1.1%, respectively.

Out of the three different scenarios that were taken into consideration for feature selection, it
was discovered that RFE-RFR, which had 35 features that were chosen, showed the most promising
outcomes for the CatBoost model and demonstrated the most optimum trade-off between the amount
of time needed for training and the gains in RMSE score. When compared to the baseline, the
experimental findings show that the amount of time spent training has decreased by 48.6%, the RMSE
score has improved by 8.2%, and the R? score has improved by 1.3%.

3.4.2. Analysis of CatBoost Performance

From the point of view of model performance, three CatBoost model candidates have shown
optimal results in terms of R2 and RMSE scores, as well as training length. As seen in Table 7, with a low
RMSE score of 1.416 and an excellent R2 score of 0.937, the RFE-RFR, which used 35 features, had the
most ideal performance. It is important to note that the training period for this specific model, which is
5.391 seconds, is relatively short compared to the baseline. Compared to the baseline, the RFE-LASSO
technique, which uses a 30-feature selection, achieved the second-greatest degree of performance with
an RMSE score of 1.421 and an R2 score of 0.937. However, the training length of the model is 10.4
seconds, which is much longer than the training period of the RFE-RFR model on average.
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Table 8. The result of modeling with various RFE combinations
Selected

Feature Selection Training Time (sec.) RMSE R2
Features
RFE-RFR 40 5.993 1.470 0.932
RFE-SVR 40 10.91 1.480 0.931
RFE-DTR 40 5.917 1.488 0.931
RFE-LASSO 40 15.13 1.510 0.929
RFE-RIDGE 40 26.29 1.533 0.926
RFE-RFR 35 5.391 1.416 0.937
RFE-DTR 35 5.408 1.480 0.931
RFE-RIDGE 35 9.733 1.500 0.929
RFE-SVR 35 9.171 1.506 0.929
RFE-LASSO 35 9.051 1.535 0.926
RFE-LASSO 30 10.38 1.421 0.937
RFE-DTR 30 4.826 1.439 0.935
RFE-SVR 30 8.236 1.496 0.930
RFE-RFR 30 4.924 1.499 0.930
RFE-RIDGE 30 8.582 1.504 0.929

Finally, the RFE-DTR approach, which used a collection of 30-feature, demonstrated the third
greatest degree of performance, as seen in Table 8. This was shown by an RMSE value of 1.439 and a
significantly raised Rz value of 0.935, the latter of which was much higher than the baseline. Additionally,
it is important to point out that the model being considered has the shortest training time, which is 4.83.
This makes it more efficient than both RFE-RFR and RFE-LASSO. Although there were marginal
improvements in training durations for all feature selection approaches, the RFE-RFR approach with 35
features showed notable potential by exhibiting improved prediction accuracy while maintaining
reasonable training efficiency. The results highlight the significance of carefully choosing feature
selection methods that align with the demands of the predictive modeling objective while considering
the balance between the time required for training and the performance of the model.

Table 9. Applied hyperparameters for each model

Model Hyperparameter Setting
CATB No. of trees: 300, learning rate: 0.5, max. depth. Ind. Trees: 6, fraction of features for each tree: 1
XGB No. of trees: 300, learning rate: 0.5, regularization:1, max. depth. Ind. Trees: 6, fraction of features

for each tree/level/split: 1

No. of trees: 300, learning rate: 0.5, max. depth. Ind. Trees: 6, smallest subset: 2, fraction of training
instances: 1

ADB No. of estimator: 300, learning rate: 0.5, regression loss function: linear

ANN Neurons in hidden layers: 64/128, Activation: ReLu, Solver: Adam, max iter: 300

GBM

Table 10. Comparison of CatBoost performance to other well-known regression models.

Regression Model Training Time (sec.) RMSE R?
CATB 5.391 1.416 0.937
XGB 6.428 1.587 0.921
GBM 72.815 1.634 0.916
ADB 91.703 1.722 0.907
ANN 26.897 4.524 0.358

3.4.3. Comparative Analysis

To demonstrate the effectiveness of feature selection and enhancement in the performance of
CatBoost, we compare the CatBoost model constructed using RFE and Random Forest Regression with
other widely recognized machine learning techniques. In comparing CatBoost with various regression
models, we set specific hyperparameter configurations, detailed in Table 9. The hyperparameter setup
was implemented using the Orange Data Mining software for each predictor. The regression models
being examined exhibit an identical feature selection scenario, specifically the RFE combined with
Random Forest Regression as the learning algorithm, with 35 features. As indicated in Table 10, it is
apparent that CatBoost demonstrates a notably improved performance compared to other algorithms
concerning RMSE and R? values. CatBoost demonstrated superior performance to other boosting
algorithms and artificial neural networks (ANN) across many performance measures, including training
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time, RMSE, and R? scores. The findings suggest that CatBoost is a very appropriate machine learning
technique for regression tasks involving datasets of limited size.

4. CONCLUSION

This study conducted a comprehensive experimental investigation to enhance the performance
of CatBoost for regression tasks. By integrating Recursive Feature Elimination (RFE) with various
learning algorithms, including Decision Tree, Random Forest, Support Vector Regression (SVR), LASSO
regression, and Ridge regression, alongside outlier detection and removal using iForest, a more robust
preprocessing approach was achieved. Notably, when Random Forest Regression was utilized within the
RFE-iForest framework, significant enhancements in CatBoost models were observed.

The results demonstrate the superiority of CatBoost-RFE with Random Forest regressor over
other well-known machine learning algorithms such as AdaBoost, XGBoost, Gradient Boosting, and
Artificial Neural Networks (ANN). Specifically, the CatBoost-RFE with Random Forest regressor
exhibited the highest level of predictive capability, particularly in predicting boiler flue gas exit
temperature in coal-fired plants.

Future research endeavors could explore automated search techniques for RFE to determine
the optimal number of features, especially when dealing with larger datasets.
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