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Climate change is causing water levels to rise, leading to detrimental 
effects like tidal flooding in coastal areas. Surabaya, the capital of East 
Java Province in Indonesia, is particularly vulnerable due to its low-lying 
location. According to the Meteorological, Climatological, and 
Geophysical Agency (BMKG), tidal flooding occurs annually in Surabaya 
as a result of rising water levels, highlighting the urgent need for water 
level forecasting models to mitigate these impacts. In this study, we 
employ the Temporal Convolutional Network (TCN) machine learning 
model for water level forecasting using data from a sea level station 
monitoring facility in Surabaya. We chose the TCN due to its ability to 
capture long-range dependency in sequential data and its ease of 
implementation. We divided the training data into three scenarios: 3, 6, 
and 8 months to train TCN models for 14-day forecasts. The 8-month 
training scenario yielded the best results. Subsequently, we used the 8-
month training data to forecast 1, 3, 7, and 14 days using TCN, 
Transformers, and the Recurrent Neural Network (RNN) models. TCN 
consistently outperformed other models, particularly excelling in 1-day 
forecasting with coefficient of determination (𝑅2) and RMSE values of 
0.9950 and 0.0487, respectively. The contribution of the study is the 
development of deep learning TCN to predict water levels in coastal 
areas of Surabaya, which has the potential to be implemented in other 
locations in Indonesia. 
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1. INTRODUCTION 

The increase in water levels is one of the many changes caused by climate change [1]. Although 
this rise happens slowly, it is happening faster now and has serious impacts [2], [3], and [4]. Due to their 
typical flat terrain and low elevations close to the water's surface, coastal areas are particularly 
vulnerable to the rise in water levels [5]. Surabaya, the capital city of East Java, predominantly lies in a 
low-lying area with altitudes ranging from 3-6 meters above water level, while its southern part exhibits 
higher elevations, reaching 20-50 meters above water level [6]. According to the Meteorological, 
Climatological, and Geophysical Agency (BMKG), Surabaya's coastal areas experience tidal flooding 
every year due to rising water levels [5]. In some years, the risk of flooding is four to five times higher 
than usual. This poses a serious threat to the coastal community. To prevent further losses, it is essential 
to take measures against tidal flooding caused by water level rise, and one effective approach is through 
water level forecasting. 

Water level forecasting is important to help us predict how water levels will increase in the 
future, allowing us to minimize the impact of rising water levels, such as flooding in coastal areas [7]. 
Water level data is also essential for port operations, particularly in scheduling ship transportation and 
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managing port services efficiently [8]. Additionally, past records of water level are fundamental for the 
design and construction of coastal and offshore infrastructure, while precise forecasts of water level are 
indispensable for planning and executing construction activities for these structures [9]. Tidal Harmonic 
Analysis (THA) is a traditional method for water level forecasting. It involves decomposing water level 
data into harmonic components using the Least Squares Estimation (LSE) based on observed data. 
However, THA is limited to predicting only tidal components and relies on extensive historical data [10]. 

Various approaches have been suggested to enhance the accuracy of THA in water level 
forecasting, such as employing multivariate least-squares harmonic estimation [11] and integrating the 
LSE method with the Inaction Method (IM) [12]. For water level prediction, other methods based on time 
series analysis have also been used. These include ARIMA (Autoregressive Integrated Moving Average) 
[13], SARIMA (Seasonal Autoregressive Integrated Moving Averaged) [14], and Holtz-Winters 
Exponential Smoothing [15]. ARIMA achieved a root mean square error (RMSE) of 0.270 for one-day-
ahead prediction, while SARIMA and the Holt-Winters approach yielded RMSE values of 0.155 and 0.134, 
respectively, for seven-day-ahead forecasting. These results highlight the ongoing need to identify a 
model capable of achieving greater forecasting accuracy. An effective strategy for enhancing predictive 
models involves leveraging machine learning, a relatively novel approach. Ishida et al. (2020) [16] 
conducted a study in which they looked at the use of machine learning for forecasting water levels. 
Specifically, Long Short-Term Memory (LSTM) was employed to forecast water levels at the Osaka 
Gauging Station in Japan, resulting in the highest accuracy with an Nash-Sutcliffe efficiency (NSE) value 
of 0.720 for the forecasting period of 2016-2018. In a study conducted by Pan et al. (2020) [17], a model 
combining Gated Recurrent Unit (GRU) and Convolutional Neural Network (CNN) was developed for 
precise water level forecasting. The results showed that the GRU-CNN model did better than other 
machine learning models, even the LSTM model. It had the highest accuracy, with an NSE value of 0.9966 
for a 5-day forecasting period. While GRU and CNN models offer high forecasting accuracy, they suffer 
from a notable drawback: high memory requirements during training. However, in 2018, Bai et al. 
introduced a solution to this issue with their Temporal Convolutional Network (TCN), which features 
shared filters across a layer, resulting in reduced memory requirements [18]. As a result, TCN holds 
promise for accurate water level forecasting. 

Temporal Convolutional Network (TCN), which was introduced by Bai et al. in 2018, is a deep 
neural network architecture designed for processing time series data [19], [20]. TCN has been widely 
employed in various time series challenges, consistently demonstrating strong performance and 
yielding favorable outcomes. A study conducted by Hewage et al. in 2020 [21] explored the use of TCN 
for weather forecasting using data collected from local weather stations. The findings revealed that TCN 
outperformed LSTM and other traditional machine learning methods in terms of forecasting accuracy. 
Benitez et al. (2020) employed the Temporal Convolutional Network (TCN) to forecast energy demand 
in Spain, demonstrating its superior forecasting accuracy compared to LSTM models [22]. While TCN 
has shown promising accuracy in numerous forecasting applications, its adoption for water level 
prediction remains limited. 

The objective of this paper is to design a precise water level forecasting model using machine 
learning techniques. Specifically, we employ Temporal Convolutional Networks (TCN) for this purpose 
and compare its performance with other contemporary machine learning models, including 
transformers and RNN. The selected case study is Surabaya in Indonesia, characterized by its low-lying 
terrain, where the coastal areas are prone to tidal flooding due to rising water levels [5]. The 
contribution of this research is to find a better algorithm to predict the water level that could be 
implemented in other locations in Indonesia due to the many cities with similar conditions. 

 
2. METHOD 

2.1.  Design System 

In this study, we utilized water level data obtained from the sea level monitoring facility 
provided by UNESCO for the location of Surabaya, Indonesia. During pre-processing, we addressed 
spikes and outliers within the data and handled missing values through interpolation. Subsequently, the 
dataset was divided into training and testing subsets, and the TCN model was trained using the training 
data. The model was then evaluated for forecasting performance, with several scenarios tested, varying 
the forecast horizon from 1 to 14 days. If the forecasting accuracy doesn’t meet the expected result, 
hyperparameter tuning is conducted to improve model performance.  Finally, we compared the 
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forecasting accuracy of the TCN model with other machine learning models using the coefficient of 
determination and Root Mean Squared Error metrics. These steps are illustrated in Figure 1. 
 

 
 

Figure 1. Flowchart of the TCN-based water level forecast 

2.2.  Water Level Data 

The water level data utilized in this study was sourced from the sea level station monitoring 
facility provided by UNESCO. The station is situated in the northern region of Surabaya, Indonesia, with 
coordinates between -7.19996944 latitude and 112.74058611 longitude, as depicted in Figure 2. This 
dataset is publicly accessible online through the following link: https://www.ioc-
sealevelmonitoring.org/station.php?code=sura. 

 

 
Figure 2. Location of the water level station monitoring facility in Surabaya 

2.3.  Pre-Processing 

To ensure the reliability and usability of the water level data, we conducted a series of 
preprocessing steps. These steps were designed to handle missing values, outliers, and spikes, as well as 
to resample and interpolate the data. This process aimed to generate high-quality input data suitable for 
the machine learning model.  

https://www.ioc-sealevelmonitoring.org/station.php?code=sura
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The raw water level data can be seen in Figure 3. It is recorded at three-second intervals, 
spanning from March 1, 2023, to December 25, 2023. In water level forecasting, utilizing such detailed 
period intervals in the data may introduce unnecessary harmonic components, potentially impacting 
forecasting accuracy. To address this, we transformed the raw water level data into hourly intervals. 

 

 
Figure 3. Plot of raw water level data in Surabaya 

Next, we established threshold values to detect spikes within the data. The first threshold value 
was determined by adding three times the standard deviation to the mean water level, while the second 
threshold value was determined by subtracting three times the standard deviation from the mean water 
level. Any water level exceeding the first threshold value or falling below the second threshold value was 
identified as a spike, and these spikes were subsequently removed. Subsequently, rolling window 
statistics are computed to evaluate the median and standard deviation of the water level using a 6-hour 
window. Through this process, outliers are identified and subsequently removed, enhancing the 
dataset's reliability. However, addressing spikes and outliers in the data leads to the creation of 
additional missing values. To that end, we identified empty values within the dataset to pinpoint periods 
of missing data. The plot displaying the water level data alongside the flagged missing values is depicted 
in Figure 4.  
 

 
Figure 4. Plot of resampled water level data with flagged missing values (red bars) 

The final step of data pre-processing involves addressing missing values through cubic 
interpolation, resulting in the processed data depicted in Figure 5. Additionally, the preprocessed data 
is partitioned into training and testing datasets, as illustrated in Figure 6. We partitioned the training 
dataset into three distinct periods: 3 months (from September 11, 2023, to December 11, 2023), 6 
months (from June 11, 2023, to December 11, 2023), and 8 months (from April 11, 2023, to December 
11, 2023). This division aims to evaluate the sensitivity of the training data to the model's performance 
and optimize the training dataset for improved model accuracy. 
 

 
Figure 5. Plot of the processed hourly water level data with no missing values 
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Figure 6. Plot of data splitting with training periods of 8 months (top), 6 months (middle) and 3 months (bottom) 

2.4.  Temporal Convolutional Neworks (TCN) 

In recent years, Temporal Convolutional Networks (TCN) have gained attention as a robust 
solution for analyzing sequential data by effectively capturing temporal patterns and long-term 
dependencies. The unique architecture of TCN incorporates several essential components, including 
causal and dilated convolution and residual connections, which enhance its effectiveness [23]. 

2.4.1.  Causal Convolutions 

 One notable feature of TCN is its utilization of causal convolution, ensuring that the network's 
output at each time step relies solely on past inputs. This property is particularly beneficial for tasks 
involving sequential data, as it prevents information leakage from future time steps. 
 

2.4.2.  Dilated Convolutions 

 Wang et al. (2023) [23] explained that adding more than one causal convolutional layer can 
make the network more receptive, but it can also cause gradient problems in longer sequences. To tackle 
this, TCN introduces dilated convolutions, which progressively expand the network's receptive field. 
Dilated convolution samples the input of the upper layer at intervals, with the dilation rate growing 
exponentially based on 2. This method allows for a broader receptive field with fewer network layers. 
The computation formula for dilated convolution is represented as follows: 
 

𝐹(𝑠) = (𝑥 ∗ 𝑓(𝑠) =  ∑𝑓(𝑡) .  𝑥𝑠−𝑑 .  𝑡

𝑘−1

𝑡=0

𝑑
⬚   

(1) 
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In this context, the rate of dilation is referred to as 𝑑, the size of the filter is denoted as 𝑘, and 𝑥𝑠−𝑑 .  𝑡 
represents the convolution of the previous state. This approach effectively decreases network 
complexity while improving computational efficiency. Moreover, the architecture of dilated 
convolutions can be illustrated, as depicted in Figure 7 [24]. 
 

 
Figure 7. Architecture of dilated convolutions with 𝑑 = 1, 2, 4 and 𝑘 = 3 

In this study, we employ the TCN machine learning model to design a water level forecasting 
system. Details of the TCN configuration are provided in Table 1. 
 

Table 1. The configuration of TCN 

Model Model Setting 
TCN Layer = 1 (5 hidden layer) 

 Batch size = 32 
 Epoch = 10000 
 Patient = 10 
 Activation = linear 
 Optimizer = adam(1e-3) 
 Loss = huber 

2.5.  Peformance Metrics 

To determine the model with the best forecasting accuracy, we utilize the coefficient of 
determination (𝑅2) and Root Mean Squared Error (RMSE) as performance metrics. The coefficient of 
determination (𝑅2), a commonly used quantitative metric for evaluating a model's predictive capability, 
ranges from 0 to 1 [10].  The formula for 𝑅2  is as follows (2-4): 

 

𝑅2 = 1 − 
𝑅𝑆𝑆

𝑇𝑆𝑆
 , 

(2) 

 

𝑅𝑆𝑆 = ∑(𝑦𝑖 − 

𝑁

𝑖=1

𝑦 
𝑖
)2 , 

(3) 

 

𝑇𝑆𝑆 = ∑(𝑦𝑖 − (
1

𝑁
∑𝑦𝑖))

2

𝑁

𝑖=1

𝑁

𝑖=1

  
(4) 

 
In Equation (2)-(4), RSS is Residual Sum of Squares, while TSS represents Total Sum of Squares. Here, 𝑦𝑖  
denotes the individual observed value, 𝑁 represents the total number of data points, and �̂�𝑖  represents 
the predicted value [10]. 
 The RMSE serves as a measure to assess the average error's magnitude. The formula for RMSE 
is as follows [25]: 
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𝑅𝑀𝑆𝐸 =  √
1

𝑁
∑(�̂�𝑖 − 𝑦𝑖)2
𝑁

𝑖=1

 

(5) 

 
3. RESULT AND DISCUSSION 

In this section, we conduct water level forecasting using data from the water level station 
monitoring facility in Surabaya, Indonesia. To optimize the model's performance, we divide the training 
data into several scenarios to assess their sensitivity. These scenarios consist of periods spanning 3 
months (from September 11, 2023, to December 11, 2023), 6 months (from June 11, 2023, to December 
11, 2023), and 8 months (from April 11, 2023, to December 11, 2023). Each scenario is then utilized as 
training data for the TCN model to generate 14-day forecasts (from December 11, 2023, to December 
25, 2023). The best results can be seen in Table 2, which shows that using a training dataset that spans 
8 months gives the highest coefficient of determination (𝑅2) and lowest RMSE values of 0.9903 and 
0.0613, respectively. 
 

Table 2. Table result of TCN 14 days forecasting with various scenarios 

Length of Training Data Coefficient of Determination (𝑅2) RMSE 
3 Months 0.7569 0.3065 
6 Months 0.9453 0.1454 
8 Months 0.9903 0.0613 

 
Subsequently, employing an 8-month training dataset, we conducted forecasting for 1, 3, 7, and 14 days 
using TCN forecasts (from December 11, 2023, to December 25, 2023). Additionally, we employed other 
machine learning models, specifically Transformers and RNN, for comparison to determine their relative 
performance compared to TCN. The findings indicate that TCN outperforms Transformers and RNN in 
water level forecasting. These comparative results are presented in Table 3. 
 

Table 3. Table result of 1 to 14 days of forecasting using various models 

Forecast 
(Day) 

Transformers RNN TCN 
𝑅2 RMSE 𝑅2 RMSE 𝑅2 RMSE 

1 0.9727 0.1135 0.9688 0.1213 0.9950 0.0487 

3 0.9763 0.1112 0.9639 0.1372 0.9925 0.0626 
7 0.9755 0.1109 0.9665 0.1296 0.9914 0.0656 

14 0.9587 0.1263 0.9650 0.1162 0.9903 0.0613 

 
Table 3 shows that TCN outperforms other models in forecasting accuracy, especially as the 

forecast duration shortens. Notably, TCN achieves its highest accuracy when predicting 1 day ahead, 
with impressive 𝑅2  and RMSE values of 0.9950 and 0.0487, respectively. The forecasting accuracy of 
TCN becomes more evident when considering qualitative results. Figure 8 illustrates the 14-day 
forecasting outcomes from the Transformers, RNN, and TCN models. Notably, TCN consistently 
demonstrates accurate forecasting across all time points, unlike Transformers and RNN, which 
encounter challenges on specific days. 

Figure 8 demonstrates the poor performance of the Transformers and RNN models in predicting 
data around peak points and valley points. Transformer and RNN models underestimate most data 
around peak points and valley points generally. Otherwise, the TCN model provides closer estimation 
results around peak and trough points. 

One of the problems that usually occurs in coastal areas such as Surabaya is tidal flooding due 
to peak sea tides. Therefore, better predictions for data around peak points will provide very useful 
information for anticipating the impact of extreme tides. This is the contribution of this study, where the 
TCN model succeeds in estimating the peak point more closely than the Transformer and RNN models, 
which tend to underestimate points around the peak. Given that numerous other coastal locations in 
Indonesia are facing comparable water level issues, these results hold promise for predicting potential 
sea level rise over an extended period. 
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Figure 8. 14 days forecasting results from Transformers (top), RNN (middle) and TCN (bottom) using 8 months training period 

4. CONCLUSION 

In this study, we design a water level forecasting model using machine learning techniques, 
specifically TCN, and compare its performance with other models such as Transformers and RNN. 
Initially, we partitioned the training data into three scenarios spanning 3 months, 6 months, and 8 
months to assess the sensitivity of the training data and optimize input for the TCN model. Each scenario 
serves as input for the TCN model to conduct 14-day forecasting. The results indicate that the 8-month 
training data scenario yields the most favorable outcomes. Subsequently, utilizing an 8-month training 
dataset, we conduct 1, 3, 7, and 14-day forecasting using TCN, Transformers, and RNN models. The 
results show that TCN consistently does better than the other models at all forecasting intervals. It is 
most accurate at 1-day forecasting, with an 𝑅2  value of 0.9950 and an RMSE value of 0.0487.  For future 
research, leveraging a larger dataset could enhance the validation of TCN's accuracy. Additionally, 
conducting comparisons with other machine learning models, such as XGBoost, could provide further 
insights into evaluating the TCN model's performance. 
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