

 JOIN (Jurnal Online Informatika)
p-ISSN: 2528-1682, e-ISSN: 2527-9165
Volume 9 Number 1 | June 2024: 70-79
DOI: 10.15575/join.v9i1.1310

 80

AI-Powered Real-time Accessibility Enhancement: A
Solution for Web Content Accessibility Issues

Samir Kumar Dash

Cisco Systems (India) Pvt. Ltd., Bengaluru, Karnataka, India

Article Info ABSTRACT

Article history:

Received February 02, 2024

Revised March 03, 2024

Accepted March 05, 2024

Available Online April 23, 2024

The web accessibility landscape is a significant challenge, with 96.3% of
home pages displaying issues with Web Content Accessibility Guidelines
(WCAG). This paper addresses the primary accessibility issues, such as
missing Accessible Rich Internet Applications (ARIA) landmarks, ill-
formed headings, low contrast text, and inadequate form labeling. The
dynamic nature of modern web and cloud applications presents
challenges, such as developers' limited awareness of accessibility
implications, potential code bugs, and API failures. To address these
issues, an AI-enabled system is proposed to dynamically enhance web
accessibility. The system uses machine learning algorithms to identify
and rectify accessibility issues in real-time, integrating with existing
development workflows. Empirical evaluation and case studies
demonstrate the efficacy of this solution in improving web accessibility
across diverse scenarios.

Keywords:

Accessibility
ARIA
Artificial Intelligence
Security
Web

Corresponding Author:

Samir Kumar Dash
Cisco Systems (India) Pvt. Ltd., Bengaluru, Karnataka, India
Email: samdash@cisco.com
ORCID ID: https://orcid.org/0009-0007-8887-9265

1. INTRODUCTION

A study by webaim.org on accessibility in 2023 found that 96.3% of home pages had been found
to have problems with aligning to the Web Content Accessibility Guidelines (WebAIM: The WebAIM
Million - the 2023 Report on the Accessibility of the Top 1,000,000 Home Pages. 29 Mar. 2023,
webaim.org/projects/million). These are only mistakes that were found automatically and are very
likely to be WCAG conformance failures (Web Content Accessibility Guidelines (WCAG) 2.1). This means
that the actual WCAG 2 A/AA conformance level was lower since computer testing couldn't find all
possible WCAG failure types (Web Content Accessibility Guidelines (WCAG) 2.1). While, just the web
accessibility evaluation is a costly and complex process due to limited time, resources, and ambiguity
[1], the cost of fixing them definitely comes with a larger cost that also factors into any organization’s
roadmap having the goals to fix the accessibility issues of existing websites. This results in the fact that
despite the recognized importance, the accessibility of the websites remains a serious challenge, making
their content partially or completely inaccessible to some categories of the population [2].

Various factors influence the implementation of accessibility on the web. Research indicates that
the complexity of websites, county population density, budget resources, and the percentage of the
population with disabilities play significant roles in determining the level of web accessibility [3].
Additionally, adherence to WCAG is crucial for organizations to meet minimum standard accessibility
guidelines and avoid costly mistakes during software and website development [4]. Furthermore,
utilizing tools like accessibility databases (AD) can aid in evaluating and increasing the accessibility of
public facilities, highlighting the importance of communication and iterative processes within

https://issn.brin.go.id/terbit/detail/1466480524
https://issn.brin.go.id/terbit/detail/1464049910
https://doi.org/10.15575/join.v9i1.1310

JOIN | Volume 9 No. 1 | June 2024: 80-88

 81

organizations for successful implementation [5]. Incorporating official standards like WCAG and
conducting internal audits can help in identifying areas for improvement and ensuring a more accessible
web environment [6].

Most accessibility challenges are attributed to four main factors: missing ARIA landmarks, ill-
formed headings, low-contrast text, and form labeling. Web interaction, for most blind users, is made
possible through mediation by screen readers to read on-screen text in a sequential manner [7], [8].
However, these are impacted by the fact that many websites miss the ARIA landmark and do not use
native HTML5 tags for semantic support. Additionally, many have multiple ill-formed headings, no
hierarchy, or are missing headings entirely. Low contrast text, below WCAG 2 AA thresh-olds, is found
on 83.6% of home pages. Form labeling, which is not properly used, is a major challenge in making forms
accessible to screen readers. However, despite this fact, there is little formal literature about the
accessibility of web development with a screen reader [9].

Apart from the scenario where content is directly updated by the developer, many of these also
further complicate the situation in dynamic websites and web/cloud applications, where content, forms
data visualizations, etc., are generated dynamically through program code, where it may be caused due
to the following three reasons: (1) developer may not be fully aware of the accessibility content being
generated by code in the specific situation where complex views and interactions are involved; (2) any
bug in the code may generate broken DOM may cause such issues; (3) API failure etc. may render some
content/forms halfway. So, in any case, accessibility is severely affected.

The evolution of AI has profoundly reshaped numerous domains across industries, heralding a
new era of innovation and efficiency. AI leverages vast datasets to conduct intricate analyses and derive
actionable insights, offering data-driven solutions to complex problems through sophisticated models.
AI sifts through large volumes of structured and unstructured data by employing advanced algorithms
and identifying patterns, correlations, and anomalies that may elude human analysis.

2. METHOD

This research conducts several activities begin with literature review, problem definition,
proposed solution and evaluation. In literature review, this research conducts a comprehensive review
of existing literature on web accessibility [10], [11], [12], WCAG guidelines [13], [14], ARIA landmarks
[15], machine learning algorithms for accessibility enhancement [16], and related topics. After clearly
define the primary accessibility issues faced by modern web and cloud applications in problem
definition activity, then this research describes the AI-enabled system proposed for dynamically
enhancing web accessibility. The need for a dynamic solution to address web accessibility challenges
that proposed in this research is AI or machine learning. Then, using experimental evaluation in the
research would involve conducting controlled experiments to assess the effectiveness of the proposed
AI-enabled system for enhancing web accessibility.

3. RESULT AND DISCUSSION

3.1. The Experiment Using AI

Given the expansive capabilities of AI in addressing diverse use cases through data-driven
approaches, there's considerable potential for leveraging this technology to tackle accessibility issues.
Recognizing this, as part of the experiment, a custom application was created, utilizing technologies like
PHP, Node.js, Python, and JSON at the backend, and the client was developed using HTML5 and
JavaScript. Into the development process, this application aims to proactively identify and rectify
accessibility issues in real time.

3.2. The Major Accessibility Challenges to Address

As part of the experiment, the following major contributors of the webpage accessibility are
identified to be addressed.

3.2.1. Missing ARIA Landmark

Many websites miss the landmark ARIA being defined to cater to the semantic need of the
websites/application to support screen readers. Even many of the websites do not use the native HTML5
tags supporting the key regions using the following structure [17]:

<header><header>

JOIN | Volume 9 No. 1 | June 2024: 80-88

AI-Powered Real-time Accessibility Enhancement: A Solution for Web Content Accessibility Issues (Samir Kumar Dash) 82

<main></main>

<footer></footer>

<nav></nav>

Rather, mostly <div> tags are used and continue creating text blocks, and these do not use the

proper structures. Also, for images, WCAG guideline says that non-text content must have a text
alternative (Web Content Accessibility Guidelines (WCAG) 2.1). That text alternative must have the
equivalent purpose. One of the exceptions is for decorative images, images used for formatting, or that
would be invisible to everyone. These must be "implemented in a way that can be ignored by assistive
technology." The accepted method is to have a null alt attribute, as a missing alt attribute would be read
out. Also, from ARIA's perspective, it should have aria-hidden=true.

3.2.2. Missing or Ill-formed Headings

Because headings from <h1> to <h6> are the primary mechanism screen reader users use to
navigate content, their proper implementation is important in the context of accessibility. In many cases,
20.1% of home pages had more than one <h1> tag. Many sites have ill-formed headings, i.e., no hierarchy
of the headings is maintained, like under lower headings like h5 or h6, the higher headings like h2 or h3
are placed. In many cases, headings are missing totally, and instead, <p><div> directly contain
texts with larger size font sizes as a custom code / CSS. All these give rise to challenges for screen-readers
to navigate through content reliably.

3.2.3. Low Contract Text

Low contrast text, below the WCAG 2 AA thresholds, was found on 83.6% of home pages. This
indicates that most web pages surveyed in the study fail to meet the basic accessibility standards
regarding text readability. This is the most detected accessibility issue. ow contrast text refers to text
elements on a web page that do not have sufficient contrast ratio between the foreground (text) and
background colors. This lack of contrast makes it difficult for users, especially those with visual
impairments, to read and comprehend the content. The Web Content Accessibility Guidelines (WCAG) 2
AA standards specify the minimum level of accessibility required for web content. One of the criteria for
meeting WCAG 2 AA compliance is ensuring an adequate color contrast ratio between text and
background colors. Specifically, the contrast ratio should meet certain thresholds to ensure readability
for users with low vision or color deficiencies.

3.2.4. Form Labelling

From the above-mentioned research of accessibility, it is found out that 35.8% of form inputs
identified were not properly labeled (either via <label>, aria-label, aria-labelled-by, or

title). This is a major challenge in making forms accessible to screen readers.

3.3. Limitation of Existing Solutions

As of today, several existing solutions try to address the accessibility issue, yet those have
certain limitations, as outlined below:
1. The guidelines for developing accessible content, e.g., WCAG2.0, etc. But this depends on the

developer who codes for static sites. As we see, even if guidelines exist, the accessibility challenges

are significant, as proved by research made globally, e.g., by webaim.org. Overall, exposure to

accessibility, limitations in technology, lack of time, guideline ambiguity, and organizational

structure are contributing to the non-implementation of the accessibility features during

development.

2. Tools and IDEs for content creation and HTML DOM design /development focus on checking and

validating the markups while the page is being made. This kind of IDE has existed for a long time,

but it is still not able to solve the key issues mentioned [18]. Also, these tools do not control dynamic

site content.

3. The tools to check site accessibility exist, where some of the challenges can be detected and the

developer notified, but this is not real-time, and it does not automatically fix anything.

JOIN | Volume 9 No. 1 | June 2024: 80-88

 83

3.4. Solution Hypothesis

The proposed invention is about a solution includes a webpage renderer or HTML DOM
generator that works in real time as part of the webpage and uses AI/ML to comprehend the existing
state of the page and fixes each of the 4 issues identified in the previous section. The webpage includes
the following two additional modules that illustrated in the Figure 1.

Figure 1. The ‘Page Scanner’ and ‘DOM Renderer’ are two modules that are added to the webpage via additional <scripts>

tags.

Page Scanner is one for scanning pages and collecting the currently rendered DOM of the page
and a screenshot. DOM Renderer is the second script, a DOM rendered that replaces some or more
portions of the webpage DOM in real-time, based on what it received from the server. The solution
includes a server component - an automated DOM and Screenshot analyzer tool - enabled with AI or a
rule-based engine that can analyze the existing DOM and the screenshot image of the page to run pre-
trained image classifier models to identify the various elements and form controls along with their co-
ordinates and the final rendered state, etc. Then, there is Information Flow, which has four steps
through which the solution workflow should be executed as follows:

1. Step 1: The page DOM is rendered in the browser. When the page load completes, the "Page Scanner

"component/script collects the rendered DOM information.

2. Step 2: The "Page Scanner" component/script takes a screenshot of the page (e.g., script libraries

like html2canvas can take reliable screenshots of the rendered HTML in the client)

3. Step 3: "Page Scanner" sends the collected DOM and screenshot of the page to the Server through

the rest of the APIs.

4. Step 4: In the server/cloud, the AI/ML-enabled automatic analyzer component analyses the data

and carries out the following four tasks:

a. Task 1: Fixing ARIA

JOIN | Volume 9 No. 1 | June 2024: 80-88

AI-Powered Real-time Accessibility Enhancement: A Solution for Web Content Accessibility Issues (Samir Kumar Dash) 84

In identifying and enhancing web page accessibility, the cloud-based automated analyzer tool
focuses on detecting potential ARIA landmarks, such as headers, footers, navigation bars, and
main content regions. The tool analyzes the page's structure and element positioning to
identify areas that can benefit from ARIA landmarks to improve screen reader navigation and
user experience. Subsequently, the tool intelligently injects appropriate ARIA tags, such as
"role" and "aria-label," into the HTML markup. This process effectively establishes semantic
relationships between page elements and ARIA landmarks, allowing assistive technologies to
navigate the page more efficiently and providing a more inclusive browsing experience for
users with disabilities. For tags that are used for decorative purposes or for non-
display purposes, aria-hidden=true is to be used to be understood by ARIA. Null (blank)
alt attributes have been established long before and will be accepted by more assistive
technologies, so add a null alt tag for the element on the page that screen readers do

not read out.
b. Task 2: Fixing Ill-formed Headings

The Cloud analyzer component is an automated tool that is utilized to examine the webpage's
structure and layout. First, the tool identifies all page elements, capturing their position
coordinates and size. This data determines if any header elements need to be included or
properly structured. The tool then assesses the size of text blocks and their positioning in
relation to each other. Using this information, the tool identifies and segments different
sections on the page. To enhance the semantic structure and improve accessibility, the tool
intelligently replaces larger text sizes with H1 to H6 tags where needed and injects
appropriate heading elements, e.g., <h1> till <h6>. This process ensures the proper
hierarchical organization of content, leading to more accessible and search engine-friendly
web pages.

c. Task 3: Fixing Low Contrast Text

In a similar approach, the cloud-based automated analyzer tool scans a screenshot of a
webpage to extract critical visual data. The tool utilizes advanced image processing techniques
to assess text density, font size, and color contrast within the captured screenshot. By
analyzing these elements, the tool gains insights into the web page's readability and
accessibility. Based on the data collected, the tool generates HTML and CSS code, proposing
changes to the web page's DOM structure and styles. It suggests adjustments to improve text
legibility, ensure appropriate font sizes, and enhance color contrast, complying with
accessibility guidelines. By automating this process, web developers can efficiently implement
accessibility improvements, leading to a more inclusive user experience for all visitors.

d. Task 4: Fixing Form Labelling

The automatic analyzer tool also addresses the issue of missing labels within web forms. The
tool identifies input fields, dropdown menus, and other form elements by intelligently
analyzing the web page's DOM data. It then performs an in-depth contextual analysis to
understand the relationships between these elements and the surrounding content. Using this
information, the tool generates descriptive labels for the form elements, filling in the gaps
where labels are absent or insufficient. These new labels are meticulously crafted to provide
meaningful and informative descriptions, ensuring that users with assistive technologies can
accurately interpret and interact with the form. By automating the label generation process,
the tool significantly streamlines the accessibility optimization process, making it easier for
developers to create accessible and user-friendly web forms.

5. Step 3: Finally, the resultant output DOM is sent back to the page where the DOM Renderer
component script, which then uses this DOM to replace the existing DOM of the page, thereby
making it instantly accessible for the previously pointed out 4 accessible issues.

3.5. Experimental Design

The study involved the creation of a custom software module using PHP and JQuery, supporting
Rest API calls using JSON.

3.5.1. The Tuned Model

The training data was used to train OpenAI’s GPT 3.5 model to get a tuned model [19], which
acted as the server component for the DOM analyzer, that can accurately generate the fixed DOM or the
HTML elements. For this sample data was prepared based on the before and after state of DOMs. The
high-level flow is shown in the Figure 2.

JOIN | Volume 9 No. 1 | June 2024: 80-88

 85

Figure 2. Sample data in JSON format was used to train the standard OpenAI GPT model

By using the OpenAI’s CLIP zero-shot image classifier for image analysis to understand image

type [20]. This approach allows AI to "understand" the context of the image and decide if aria-
hidden=true would be applied or not.

3.5.2. The Training Data

The training data used was based on JSON format. Each set of training JSON contained pre and
post-state of various scenarios of Accessibility issues. An is as follows, where the pre-state uses a DOM
example with missing ARIA attribute for a <nav> element :

{"messages":

[{"role": "system", "content": "<nav>

 Home

 About

 Services

 Contact

</nav>"},

{"role": "user", "content": "Fixed Version HTML with Accessible Rich Internet

Applications (ARIA) roles and attributes"},

{"role": "assistant", "content": "<nav role="navigation">

 Home

 About

 Services

 Contact

</nav>"}

]}

 3.5.1. The DOM Renderer

The HTML DOM renderer that worked in real time as part of the webpage, was created using
jQuery and CSS. Once it received the output from the server through ajax, applied the output to replace
the existing DOM elements with the fixed DOM.
3.6. Experiment Execution

Multiple sample webpages with basic block on HTML elements with ill-formed and missing tags
were introduced was accessed over localhost and during the runtime the ‘Page Scanner’ and ‘DOM
Renderer’ scripts were injected at the runtime. As per the expectation, the software analyzed the pages
and updated the pages DOM with suggested fixed DOM by the AI.

In Figure 3, one sample case is shown, where the Before and the After states are provided, how
it appears visually. The fixed state may look similar visually as the goal was to make minimal changes
visually, and as part of the accessibility fixes, correct the ARIA, ALT tag, Heading types etc. to be fixed.
With a closure look, there are some subtle differences like the margin of the heading title seems to be

JOIN | Volume 9 No. 1 | June 2024: 80-88

AI-Powered Real-time Accessibility Enhancement: A Solution for Web Content Accessibility Issues (Samir Kumar Dash) 86

increased, as the tags of earlier got changed to <h1> tags. Similarly, the label of the text area for message
is also appeared in the fixed version, where as in the before applying fix, it was not visible.

Figure 3. A sample webpage was accessed over localhost and during the runtime the scanner and renderer scripts were injected

at the runtime to fix the page.

3.7. Result and Analysis

Based on the experiment ran on the sample webpages, the outcome was satisfactory. The AI
powered software was able to fix the accessibility issues in scope in all sample webpages. The before
and after states (fixed webpage DOM) are compared in Figures 4 and 5. The fixed DOM, has the missing
ARIA landmarks were added. The decorative image with pattern was identified and a null alt attribute
is added along with the aria-hiddent=”true” attribute. The banner image got the alt attribute

describing the image that was generated from the OpenAI’s CLIP zero-shot image classifier.

JOIN | Volume 9 No. 1 | June 2024: 80-88

 87

Figure 4. A sample webpage was accessed over localhost and during the runtime the scanner and renderer scripts were injected

at the runtime.

Figure 5. A sample webpage was accessed over localhost and during the runtime the scanner and renderer scripts were injected

at the runtime.

6. CONCLUSION

From the experiment conducted, it is concluded that using an AI-powered system can, in real
time, fix some of the major web page accessibility challenges. The current study focuses on specific
accessibility issues that are mostly found across the internet, e.g., ARIA tags, missing tags, and ALT tags
etc. However, further study can be conducted to extend this approach to fix issues such as tab-indexing,
form elements etc. Also, by training the tuned model with a wide variety of data, the solution can be
made production-grade.

JOIN | Volume 9 No. 1 | June 2024: 80-88

AI-Powered Real-time Accessibility Enhancement: A Solution for Web Content Accessibility Issues (Samir Kumar Dash) 88

REFERENCES

[1] A. Hambley, Y. Yesilada, M. Vigo, and S. Harper, “Web Structure Derived Clustering for Optimised Web Accessibility
Evaluation,” in Proceedings of the ACM Web Conference 2023, New York, NY, USA: ACM, Apr. 2023, pp. 1345–1354. doi:
10.1145/3543507.3583508.

[2] Z. Jordanoski and M. Meyerhoff Nielsen, “The challenge of web accessibility: an evaluation of selected government websites
and service portals of high, middle and low-income countries,” in Proceedings of the 16th International Conference on Theory
and Practice of Electronic Governance, New York, NY, USA: ACM, Sep. 2023, pp. 101–110. doi: 10.1145/3614321.3614343.

[3] G. Carlsson, O. Jonsson, S. Olander, M. Salén, E. Månsson Lexell, and B. Slaug, “Exploration of a Web-based accessibility tool
for public facilities,” Facilities, vol. 41, no. 15/16, pp. 66–84, Dec. 2023, doi: 10.1108/F-10-2022-0132.

[4] Y. Bai, J. Grzeslo, B. Min, and K. Jayakar, “Accessibility of local government websites: influence of financial resources, county
characteristics and local demographics,” Univers Access Inf Soc, vol. 20, no. 4, pp. 851–861, Nov. 2021, doi: 10.1007/s10209-
020-00752-5.

[5] N. Palani, The Web Accessibility Project. Boca Raton: Auerbach Publications, 2022. doi: 10.1201/9781003299431.
[6] T. W. Hostetler et al., “Web accessibility trends and implementation in dynamic web applications,” Feb. 2022.
[7] A. Hambley, “Empirical web accessibility evaluation for blind web users,” ACM SIGACCESS Accessibility and Computing, no.

129, pp. 1–5, Jan. 2021, doi: 10.1145/3458055.3458057.
[8] B. Gomes, J. Rios, and K. R. H. Rodrigues, “Challenges for the Implementation of Accessible Web and Mobile Systems,” 2020,

pp. 138–158. doi: 10.1007/978-3-030-46130-0_8.
[9] C. Kearney-Volpe and A. Hurst, “Accessible Web Development,” ACM Trans Access Comput, vol. 14, no. 2, pp. 1–32, Jun. 2021,

doi: 10.1145/3458024.
[10] K. Wallace, “Workshop: Accessibility in Web Design,” in 2022 IEEE International Professional Communication Conference

(ProComm), IEEE, Jul. 2022, pp. 462–463. doi: 10.1109/ProComm53155.2022.00091.
[11] S. S. Macakoglu and S. Peker, “Web accessibility performance analysis using web content accessibility guidelines and

automated tools: a systematic literature review,” in 2022 International Congress on Human-Computer Interaction,
Optimization and Robotic Applications (HORA), IEEE, Jun. 2022, pp. 1–8. doi: 10.1109/HORA55278.2022.9799981.

[12] N. Palani, The Web Accessibility Project. Boca Raton: Auerbach Publications, 2022. doi: 10.1201/9781003299431.
[13] K. Boyalakuntla, A. S. M. Venigalla, and S. Chimalakonda, “WAccess -- A Web Accessibility Tool based on WCAG 2.2, 2.1 and

2.0 Guidelines,” Jul. 2021.
[14] R. S. Germano and I. Frango Silveira, “WCAG-Easy Tool : A tool based in the WCAG to learn web accessibility,” in 2022 17th

Iberian Conference on Information Systems and Technologies (CISTI), IEEE, Jun. 2022, pp. 1–6. doi:
10.23919/CISTI54924.2022.9820012.

[15] R. P. M. Fortes, H. L. Antonelli, and A. de Lima Salgado, “Accessibility and Usability Evaluation of Rich Internet Applications,”
in Proceedings of the 22nd Brazilian Symposium on Multimedia and the Web , New York, NY, USA: ACM, Nov. 2016, pp. 7–8. doi:
10.1145/2976796.2988221.

[16] F. Zambrano and E. Muñoz, “Statistical machine learning methods applied in the study of web accessibility: a literature
review,” Minerva, vol. 1, no. Special, pp. 150–157, Dec. 2022, doi: 10.47460/minerva.v1iSpecial.90.

[17] J. O. Connor, Pro HTML5 Accessibility. Berkeley, CA: Apress, 2012. doi: 10.1007/978-1-4302-4195-9.
[18] M. M. Alnahari, J. Chakraborty, M. Mohamed, and A. Ali-Gombe, “Arabic web accessibility analysis: findings from a usability

study of Arabian web developers,” Human-Intelligent Systems Integration, vol. 4, no. 3–4, pp. 81–96, Dec. 2022, doi:
10.1007/s42454-022-00045-7.

[19] Open AI, “Fine-tuning,” Open AI Documentation. Accessed: Apr. 15, 2024. [Online]. Available:
https://platform.openai.com/docs/guides/fine-tuning/preparing-your-dataset.

[20] S. Rahman, S. Khan, and F. Porikli, “A Unified Approach for Conventional Zero-Shot, Generalized Zero-Shot, and Few-Shot
Learning,” IEEE Transactions on Image Processing, vol. 27, no. 11, pp. 5652–5667, Nov. 2018, doi:
10.1109/TIP.2018.2861573.

	1. INTRODUCTION
	2. METHOD
	3. RESULT AND DISCUSSION
	3.1. The Experiment Using AI
	3.2. The Major Accessibility Challenges to Address
	3.2.1. Missing ARIA Landmark
	3.2.2. Missing or Ill-formed Headings
	3.2.3. Low Contract Text
	3.2.4. Form Labelling

	3.3. Limitation of Existing Solutions
	3.4. Solution Hypothesis
	3.5. Experimental Design
	3.5.1. The Tuned Model
	3.5.2. The Training Data

	3.6. Experiment Execution
	3.7. Result and Analysis

	REFERENCES

