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Malaria is a disease caused by the bite of malaria mosquitoes, which 
spreads through blood. Malaria mosquitoes will spread the Plasmodium 
parasite through their bites. Early malaria identification is essential so 
the disease can be prevented immediately. Through data science, which 
utilizes the CNN model, the classification of blood infected with 
parasites can be predicted accurately. This research uses data obtained 
from Kaggle website with 27,558 image samples. The data is divided 
into two classes, parasite-infected and uninfected, which are then 
divided again into two types. The first class is training data divided into 
80% of the total data and the other 20% as validation data. This research 
used two test scenarios to obtain a more effective classification model. 
The first scenario uses Hyperparameter Tuning and the EfficientNetB0 
model with classification results of 95%. Meanwhile, the classification 
achievement for scenario two was 99% by utilizing EfficientNetB7. 
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1. INTRODUCTION 

Malaria, a deadly illness caused by the Plasmodium parasite, is spread through the bite of an 
infected Anopheles mosquito, posing a threat to life [2]. This disease poses a significant public health 
concern and has the potential to be fatal, particularly in regions with tropical and subtropical climates, 
like Africa, Asia, and South America [3]. While malaria is both preventable and treatable, it can result in 
severe sickness and even death, particularly among infants, children under five years old, pregnant 
women, travelers, and those with HIV or AIDS [1]. 

Typically, malaria signs manifest between 7 to 30 days post-infection, showing symptoms like 
fever, headaches, nausea, vomiting, muscle pains, and exhaustion [4]. Neglecting malaria can result in 
serious issues such as anemia, kidney malfunction, and respiratory difficulties [5]. Certain groups, 
including infants, youngsters, and pregnant women, are at elevated risk of contracting malaria [1]. 

Malaria represents a significant global health challenge, impacting millions of individuals across 
the world, with approximately 229 million cases and 409,000 fatalities reported each year. Most of the 
affected individuals are children below the age of five in Sub-Saharan Africa, where malaria is 
particularly lethal [6]. In Indonesia, there were 261,617 reported malaria cases [7]. Annually, an 
estimated 30 million malaria cases occur, with only 10% of individuals receiving treatment at healthcare 
facilities [8]. 

Malaria can also have a major economic impact, as it can affect productivity and reduce a 
person's ability to work and contribute to society [9]. Therefore, prevention and control of malaria is a 
global health priority, and WHO and other world health organizations are committed to reducing the 
burden of this disease worldwide through appropriate prevention and treatment [6]. 

https://issn.brin.go.id/terbit/detail/1466480524
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Multiple techniques exist for malaria detection, such as Rapid Diagnostic Tests (RDT) and 
Polymerase Chain Reaction (PCR) [19]. Laboratory-based blood tests are available, but they may be 
time-consuming due to the minuscule size of the plasmodium parasite [10][11]. The established 
approach for malaria detection is the microscopic analysis of blood smears, but it exhibits low sensitivity 
and mandates skilled personnel [6][12]. Consequently, there is a necessity for a system to identify 
malaria in cell 2 of blood smear images, aiming to decrease inaccuracies and expedite the examination 
process conducted by medical professionals. 

Several techniques, including machine learning and deep learning algorithms, are available for 
malaria detection. Machine learning enables autonomous learning, while deep learning, a subset of it, 
mimics the human brain’s neural system. Commonly employed deep learning algorithms include CNN, 
LSTM, and RNN. Research has shown that they outperform traditional image processing and machine 
learning methods in identifying and detecting malaria parasites in microscopic blood smear images. 
Nonetheless, traditional approaches like microscopic scrutiny of blood smears continue to serve as the 
“benchmark” for lab-confirmed malaria diagnosis. 

Convolutional Neural Networks (CNN) excel in accurately classifying images by handling 
transformations like rotation and translation [13]. CNN also can conduct training before testing, 
eliminating the need for repeated training [14]. However, CNN may suffer from longer training times 
and overfitting when dealing with large datasets, resulting in inaccurate predictions [15]. Overfitting 
usually occurs due to the training data, the model works well, and the test data the model fails to work 
properly [16]. This can be overcome by increasing the effectiveness of learning on the CNN model, which 
can be done in several ways such as increasing the initialization of the model with transfer learning, data 
augmentation, using dropouts to reduce overfitting when training models, and using batch 
normalization to overcome long model training times [17][18]. 

Diyasa and colleagues conducted research on the classification of blood smear images for 
malaria detection, utilizing pre-trained deep convolutional neural networks. The dataset was split into 
70% training data and 30% test data. Two pre-trained models, GoogleNet and ShuffleNetV2, were 
compared, and the models were trained for 15 epochs using the Adam optimizer. The evaluation of these 
models yielded an accuracy of 93.89% with GoogleNet and 95.20% with ShuffleNet V2 [20]. 

Qanbar and his team investigated malaria detection using the Residual Attention Network 
method. The dataset was divided into 20,658 training samples and 6,900 test samples. A comparison 
was made between the Residual Attention Network and Support Vector Machine (SVM), with a six-epoch 
model training. The results indicated an accuracy of 95.79% with the Residual Attention Network and 
83.33% with SVM [21]. 

Shah and colleagues researched malaria detection using the CNN algorithm to classify blood 
smear images. The dataset consisted of two classes: infected with parasites and uninfected, totaling 
27,558 images. The constructed model achieved an accuracy of 95.20% [22]. 

The study seeks to improve previous research on categorizing blood smear images for malaria 
identification. It introduces a new approach using the advanced EfficientNetB0 and EfficientNetB7 
models, recognized for their exceptional precision and effectiveness compared to pre-existing models. 
The goal of the study is to achieve higher accuracy than previous research and improve the precision of 
blood smear image classification for malaria detection. 

 
2. METHOD 

      

   Figure 1. Research method flowchart 
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The research process for this study is illustrated in Figure 1. It commenced by obtaining the dataset 
from Kaggle and proceeded through various phases of data preprocessing, which involved dividing the 
data into training and validation sets. Subsequently, the results of data grouping were processed, leading 
to the modeling stage for data training. Data augmentation was applied, and the model was established 
and trained using the EfficientNetB0 and EfficientNetB7 models. To optimize the proposed model, 
hyperparameter techniques were integrated into the EfficientNetB7 model. The final phase of the 
research encompassed the evaluation of the model. 

2.1.  Dataset 

Figure 2 illustrates a malaria-stained image from each category. The dataset utilized in this research 
was sourced from Kaggle under the name “Malaria Cell Images Dataset.” The dataset contains two 
classes, parasitized and uninfected, with 27,558 images, 13,780 of which are parasitized and 13,780 are 
uninfected [23]. 

 
Figure 2. Image samples for each malaria-stained image label 

2.2.  Preprocessing Data 

The dataset contains two classes, parasitized and uninfected, with 27,558 images. Data 
preprocessing was done, including data splitting into train and validation folders. The train data to 
validation data ratio was defined as 80% to 20%. Data augmentation was performed using 
ImageDataGenerator from the Keras library. The CNN model was trained using the train data. The 
EfficientNetB0 and EfficientNetB7 models were used, and the hyperparameter technique was added to 
acquire the best parameters for the suggested model. 
 
2.3.  Augmentation 

Augmentation data is a technique used to enrich the diversity of images to enhance the model’s 
accuracy. Augmentation encompasses a range of techniques that expand the dataset by either modifying 
existing data copies or synthetically generating new instances using the available dataset. This involves 
introducing subtle alterations to the dataset or leveraging deep learning methods to create fresh data 
points. This technique involves slightly modifying the original data, such as altering its geometry and 
color properties through rotation, zooming, flipping, and many more to expand and diversify the training 
dataset. Data augmentation can enhance the robustness and performance of machine learning models, 
especially when obtaining quality data is challenging in various fields, including healthcare [24]. In this 
research, the augmentation parameters employed included a rotation range of 30, a zoom range of 0.1, 
width and height shift range set to 0.1, horizontal flip set to True, vertical flip set to False, and rescale at 
1 of 255. 

 
2.4.   Model Architecture. 

This research concentrates on the CNN model’s structure for identifying malaria in blood smear 
cell images with EfficientNetB0 and EfficientNetB7 architecture models. These models are recognized 
for being more precise and quicker than competing pre-trained models. [25]. EfiicientNetB0 consists of 
230 layers, whereas EfficientNetB7 boasts a more extensive architecture with 813 layers [26]. The 
model is composed of various elements, including an input layer (128×128) from the pre-trained 
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EfficientNet model, such as GlobalAveragePooling2D, Dropout layers (0.2, 0.5), and dense layers (128, 
512, and 1024). 

Pooling layers splits the image feature map into smaller parts and combines them into new 
sections. The MaxPool layer picks the highest values from the feature map, whereas the AveragePool 
calculates the average values to capture image information thoroughly [21]. The 
GlobalAveragePooling2D layer extracts the average feature value from an image. Techniques are used 
to enhance image diversity and improve the model’s precision. The outcomes of the model’s structure 
are illustrated in Table 1. 

Table 1. Architectural Design of the CNN Model 
Layer Filter Kernel Size Activation 

EfficientNet_Input (128, 128) - - - 
GlobalAveragePooling2D - - - 

Dropout 0.2,0.5 - - 
Dense 512, 1024 - relu 

Dropout 0.2, 0.5 - - 
Dense 128 - relu 
Dense 2 - sigmoid 

 
This study is proposed model that makes use of pre-trained models from EfficientNetB0 and 

EfficientNetB7. By integrating a Hyperparameter Tuning process, the model’s optimal parameters are 
determined, thereby enhancing its performance. The study presents two testing scenarios for the model 
with the specified parameters. The check point function in callback is used to save the top-performing 
model during training, determined by a selected performance metric on the validation dataset. This 
callback can be used flexibly, but in this context, it’s solely used to save the best model found during 
training. It can also be used in conjunction with early stopping to halt neural network training at the 
appropriate juncture [27]. The table below outlines the testing scenarios for the proposed model along 
with a description of the mode, as detailed in Table 2.  

Table 2. Model scenario description 
Scenario Description 
Model 1 Model EfficientNetB0 
Model 2 EfficientNetB7 model with the best hyperparameter results 

2.4.1   Model 1 Scenario Testing  

Model 1 scenario testing employs the proposed EfficientNetB0 model and uses the parameters 
listed in Table 3 for this scenario model.  

Table 3. Scenario architecture model 1 
Layer Filter Kernel Size Activation 

EfficientNet_Input (128, 128) - - - 
GlobalAveragePooling2D - - - 
Dropout 0.5 - - 
Dense 1024 - relu 
         Dropout 0.5 - - 
         Dense 128 - relu 
         Dense 2 - sigmoid 

 
Table 3 includes specifications with Adam Optimizer, such as the Dropout layer with range 0.5, 

the Dense layer with relu 1024 activation, the Dropout layer with range 0.5, the Dense layer with relu 
128 activation, and the Dense layer with sigmoid two activations. 

2.4.2   Model 2 Scenario Testing 

Scenario testing in Model 2 involves utilizing the EfficientNetB7 model with modified 
hyperparameters, and Table 4 concisely displays the outcomes of these hyperparameter adjustments. 

Table 4. EfficientNetB7 Hyperparameter tuning results 
Parameter Optimizer Dropout Dense Layer accuracy 

1 Adamax 0.2 1024 92% 
2 RMSprop 0.2 1024 71% 

https://issn.brin.go.id/terbit/detail/1466480524
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Based on the outcomes of Hyperparameter tuning for EfficientNetB7 in Table 4, it is evident that 
parameter 1, with an accuracy of 92%, is the most optimal. In this instance, the model utilizes the 
parameters derived from the outcomes of Hyperparameter Tuning, as detailed in Table 5. 

Table 5. Architectural Design of the CNN Model 
Layer Filter Kernel Size Activation 

Efficient Net Input (128, 128) - - - 
Global Average Pooling 2D - - - 
Dropout 0.2 - - 
Dense 512 - ReLu 
Dropout 0.2 - - 
Dense 128 - ReLu 
Dense 2 - Sigmoid 

 
The architecture for scenario 2 is outlined in Table 5. It consists of specifications such as Dropout 

set to 0.2, a Dense Layer of 512 using Relu activation, another Dropout of 0.2, a Dense Layer of 128 with 
Relu activation, a Dense layer of 2 using sigmoid activation, using the Adamax Optimizer, and spanning 
50 epochs. Binary_crossentropy classification is used. 

 
2.5.   Hyperparameter Tuning 

Hyperparameter tuning is a procedure designed to discover the optimal parameter combination 
for a model to attain the best possible outcomes. When employing the CNN network model in 
conjunction with hyperparameter tuning, various parameters, including kernel size, stride, channel 
count, and dropout rates, are adjusted [18]. By adjusting these hyperparameters, the model can be fine-
tuned to yield the most favorable results [19]. In this research, hyperparameter tuning was applied to 
identify the most suitable parameter values by comparing proposed parameter variations. These 
parameter comparisons are detailed in Table 6. 

Table 6. Comparative parameters in hyperparameter tuning 
Parameter Comparative Value 

Dropout 0.2, 0.5 
Dense Layer 1024, 512 

Optimizer Adam, Adamax, RMSprop 

 
3. RESULT AND DISCUSSION 

The results of the architectural model developed in this study for classifying malaria in blood 
smear images have been achieved in this phase. The initial step involved data collection and splitting, 
with an 80% portion allocated for training and 20% for testing. Subsequently, the training data 
underwent augmentation, applying parameters like rotation range of 30, a zoom range of 0.2, width and 
height shift range of 0.1, horizontal flip set to True, vertical flip set to False, and rescale of 255. Data 
augmentation is a technique employed to increase image variance and enhance model accuracy 
artificially. At this stage, the callback technique is utilized, incorporating ModelCheckpoint to monitor 
real-time model performance. This method retains only the best models across epochs, reducing 
memory consumption. It encompasses making subtle alterations to the dataset or generating new data 
points through deep learning. Augmented data finds application in various machine learning domains, 
especially when obtaining high-quality data, is challenging, and it aids in enhancing model robustness 
and performance across different fields, including healthcare.  

In scenario 1, the architecture details, as outlined in Table 3, include specifications with Adam 
Optimizer such as Dropout layer with range of 0.5, Dense layer with Relu activation of 1024, Dropout 
layer with range 0.5, Dense layer with Relu activation of 128, and Dense layer with sigmoid activation of 
2. The training duration is 50, and binary_crossentropy is employed for classification. After conducting 
the tests, a line graph illustrates the training process results. This graphical representation helps 
monitor changes over each iteration and identify potential overfitting issues in the model. The plotting 
results on the EfficientNetB0 model are presented in Figure 3 and Figure 4. 
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Figure 3 and 4. Results of model scenario accuracy plot 1 

 
Figure 3 displays the accuracy plot results for scenario model 1. Initially, from epoch 0 to 5, the 

validation accuracy exhibits erratic fluctuations. However, from epoch 6 to 50, it stabilizes and 
approaches a value of 1. The erratic accuracy at the outset is expected because the model is still learning 
from the dataset. So, after epoch 6, the model's performance improves as it has acquired knowledge from 
the dataset. 

In contrast, Figure 5 illustrates the validation loss plot, where initial instability is observed from 
epoch 10 to 50. This initial loss variability is also attributed to the model's learning phase with the 
dataset. Unfortunately, at the 10th to 50th epoch, the model still demonstrates overfitting issues. 

Following the acquisition of graphical results from the completed training, the next stage involves 
assessing the constructed models. Performance metrics are presented in a classification report, 
visualized in Table 7, as outlined below.  

Table 7. Model 1 scenario classification report 
Classification Report 

Accuracy 95 % 
Precision 95 % 

Recall 96 % 

 
In scenario 1, the architectural outcomes show a 95% accuracy, 95% precision, 96% recall, and a 

95% f1-score. Additionally, model evaluation can be further understood by examining the confusion 
matrix table, which quantifies the machine learning method's ability to correctly or incorrectly predict 
outcomes from the entire dataset [20]. Confusion matrix’s result for the scenario test of model 1 are 
illustrated in the captivating of Figure 5. 

 

 

Figure 5. Confusion matrix scenario model 1 

Figure 5 presents the results of the confusion matrix for model 1. It shows that for the “Uninfected” 
category, 10,737 images data were correctly predicted, while 251 were incorrectly predicted. In the 
“Parasitized” category, 10,986 images data were correctly predicted, with 72 incorrectly predicted. 

Following the training phase, a line graph is generated to visualize the training process results. 
These graphs help monitor changes in each iteration and assess potential overfitting. The plotting 
results, conducted without using hyperparameters on the EfficientNetB7 model, are illustrated in Figure 
6 and Figure 7.  

https://issn.brin.go.id/terbit/detail/1466480524
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Figure 6 and 7. The results of the model scenario accuracy plot 2 
 

Figure 6 illustrates the accuracy plot results for scenario 2. In this graph, the initial validation 
accuracy fluctuates from epochs 0 to 8 but stabilizes and approaches 1 from epochs 9 to 50. The initial 
inconsistency in accuracy is attributed to the model's learning phase within the dataset, and it becomes 
more consistent from the 9th epoch onward as the model gains a better understanding of the data. 

On the other hand, Figure 7 showcases the validation loss plot, where initial instability is observed 
from epochs 0 to 4. However, from epochs 5 to 50, the loss stabilizes and approaches 0. The initial erratic 
loss movements can be attributed to the model's early dataset learning phase, and the stability in loss 
from the 5th epoch onwards indicates that the model has learned from the dataset. 

Once the graphical results from the completed training are obtained, the subsequent phase involves 
assessing the constructed models. Performance metrics are presented in a classification report, 
visualized in Table 8, as outlined below. 

Table 8. Summary of the Classification. Report for Model 2 
Classification Report 

Accuracy. 99% 
Precision. 99% 

Recall. 98% 
F1-Score. 99% 

In the context of model scenario 2, the architectural results indicate an accuracy of 99%, precision 
of 99%, recall of 98%, and an f1-Score of 99%. Additionally, model evaluation can be further assessed 
using the confusion matrix, which measures the machine learning method's ability to predict correct and 
incorrect outcomes from the entire dataset [20]. The confusion matrix results for the scenario test of 
model 2 are presented in Figure 8. 

 

 
Figure 8. Confusion matrix scenario model 2 

 

Figure 8 displays the confusion matrix for model 2, revealing that in the "Uninfected" class, 
1,066 images were correctly predicted, while 25 were incorrect. In the "Parasitized" class, 1,087 photos 
were correctly predicted, but 27 were misclassified. 

Based on the results of the scenario trials that tried to classify malaria derived from images 
depicting blood cells, there were differences in the trial results. The difference lies in using 
Hyperparameters, which significantly increase model accuracy. This can be proven in Table 9, which 
summarizes the results of accuracy tests in these two model scenarios. 
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Tabel 9. Model Testing Results 

Scenario Accuracy Precision Recall F1-Score 

Model 1   95%      96%  95%               96% 

Model 2   99%      99%  98%               99% 

 
Nur Ibrahim et al. [1] have researched the same dataset using a pure CNN model with accuracy 

results of 95%. After testing the scenarios in this research, it was found that the model in scenario one, 
which used the EfficientNetB0 model, also achieved the same accuracy. However, accuracy on the same 
dataset classification can increase rapidly when using the EfficientNetB7 model with the addition of 
Hyperparameter tuning in scenario 2 with an accuracy 99%. Specifics regarding the comparisons made 
in previous studies are presented in Table 10 below. 

Table 10. Summary of the Comparison Table with Prior Research 

Scenario Dataset Model Accuracy 

Nur Ibrahim et al.[1] Malaria Cell Images Dataset CNN      95% 

Model 1  Malaria Cell Images Dataset EfficientNetB0      95%  

Model 2  Malaria Cell Images Dataset EfficientNetB7 using 
Hyperparameter Tuning 

     99%  

 
CONCLUSION 

This research proposes 2 CNN architectural model scenarios in EfficientNetB0 and 
EfficientNetB7 for classifying malaria based on blood cell data. The EfficientNetB7 model, enhanced with 
Hyperparameter Tuning, can improve the model’s work quality performance. Refining the 
EfficientNetB7 model with Hyperparameter Tuning can increase the results of predicting the sensitivity 
of training data. This increases accuracy by 4% compared to previous research [1] and scenario 1. Apart 
from the proposed model, the increase in classification accuracy is also influenced by any existing data 
using blood cell images. The recommended layer arrangement in EfficientnetB0 includes specifications 
with Adam optimizer, such as a Dropout layer with a range 0.5, a Dense layer with relu 1024 activation, 
a Dropout layer with a range of 0.5, a Dense layer with relu 128 activation, and Dense layer with sigmoid 
activation as presented in Table 3. 

Meanwhile, EfficientNetB7 includes specifications like a Dropout layer with a range of 0.2, Dense 
layer 128 with relu activation, and Dense layer 2 using sigmoid activation, using the Adamax Optimizer, 
as shown in Table 5. This model also provides better prediction results than previous research [1]. The 
initial stage of this research before implementing the model architecture includes data collection and 
separation, with 80% allocated for training and 20% for testing. After undergoing augmentation with 
parameters rotation range of 30, zoom range of 0.2, width and height shift range of 0.1, horizontal flip 
set to true, vertical flip set to false, and rescaling to 255, the training data is further enhanced with 
Hyperparameter Tuning and ModelCheckPoint to monitor real-time model performance. This research 
addresses the challenge of achieving the highest accuracy in classifying malaria based on blood cells. It 
demonstrates that the EfficientNetB7 model, including Hyperparameter Tuning, outperforms 
EfficientNetB0 and previous research [1]. 

Future research on similar topics, it is advisable to explore the dataset further. This study 
introduced various adjustments to the dataset's preprocessing and incorporated augmentation 
techniques. Subsequent research should assess which preprocessing and augmentation methods yield 
optimal performance and results. 
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