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Software Defined Network (SDN) network controllers have limitations in 

handling large volumes of data generated by switches, which can slow down 

their performance. Using parallel programming methods such as threading, 

multiprocessing, and MPI aims to improve the performance of the controller 

in handling a large number of switches. By considering factors such as 

memory usage, CPU consumption, and execution time. The test results show 

that although RYU outperforms POX in terms of faster execution time and 

lower CPU utilization rate, POX shows its prowess by exhibiting less 

memory usage despite higher CPU utilization rate than RYU. The use of the 

parallel approach proves advantageous as both controllers exhibit enhanced 

efficiency levels. Ultimately, RYU's impressive speed and superior resource 

optimization capabilities may prove to be more strategic than POX over time. 

Taking into account the specific needs and prerequisites of a given system, 

this research provides insights in selecting the most suitable controller to 

handle large-scale switches with optimal efficiency. 
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1. INTRODUCTION 

RYU and POX are popular network controller options used to control software defined networks 

(SDN). However, the performance of these network controllers has limitations when handling networks with 

a larger number of switches and complexity [1], [2]. The performance of RYU and POX has compared in a 

number of previous studies. Some of these studies [3], [4] have shown that RYU excels in managing complex 

networks. However, when dealing with a large number of switches, it is evident that RYU and POX have some 

serious limitations. These controllers have difficulty keeping up with the volume of data generated by a large 

number of switches, which can degrade the performance of the network [5]. Researchers have suggested using 

parallel programming techniques, including MPI, multiprocessing, and threading, to improve the efficiency of 

RYU and POX. These methods can better utilize the CPU's processing capabilities [6]–[8] to improve the 

performance of these two controllers [9] in terms of processing speed and memory allocation. The effectiveness 

of parallel methods in improving the efficiency of network controllers has not been thoroughly investigated. 

Applying parallel programming techniques such as MPI, multiprocessing, and threading are suggestions given 

by researchers. So, the purpose of this study is to find out how RYU and POX differ in terms of how well 

parallel programming techniques such as MPI, multiprocessing, and threading can help improve network 

controller performance [10], [11]. In this study, we provide an introduction to parallel programming and explain 

the benefits of using these techniques for SDN controllers. We also explain how to implement parallel 

programming in RYU and POX. 
RYU and POX have been extensively studied and compared in terms of their ability to manage 

network switches. Examples of research showing the superior performance of RYU in handling very large 

network switches can be found in [12], [13]. After comparing RYU and POX, these studies concluded that 

RYU is superior in handling large-scale network switches. Similarly, [14] found that RYU outperforms POX 

in terms of robustness, efficiency, and field adaptability. According to the analysis from research [4], RYU and 
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POX are equally effective in handling network switches. This study compared the performance of both network 

controllers under various workloads and found that RYU is superior in handling networks under heavy loads. 

To improve their efficiency, network controllers can utilize a method called paralleling. The effectiveness of 

parallel methods in improving network performance has been the subject of several research efforts. With 

parallel implementation, researchers can apply more processor cores at lower frequencies to more network 

controllers, closing the performance gap in multi-controller scenarios, as done in the research referenced in 

[15]. Lowering the operating frequency of each core and implementing controllers in parallel results in greater 

energy efficiency. For a constant throughput scenario, experimental results showed a 28% improvement in 

processor energy efficiency compared to the single-core strategy. Research conducted by [16] performing a 

parallel flow installation to mitigate the effects of DoS attacks on software-defined networking (SDN) without 

losing the ability to monitor and control network traffic. This approach reduces the effects of DoS attacks by 

installing flows in parallel, which reduces control channel traffic and controller utilization. 
In this study, the researchers will use parallel programming techniques, specifically MPI, 

multiprocessing, and threading. The goal of this research is to advance the understanding of how parallel can 

improve the functionality of network controllers. The results obtained from this research will be used in the 

development of improved SDN network controller solutions that can proficiently manage more complicated 

and extensive networks with higher reliability and efficiency. The researchers will use parallel programming 

approaches, namely MPI, multiprocessing, and threading, to compare RYU and POX. The research will also 

evaluate the efficacy of the network controller in managing networks with a larger number of switches. The 

utilization of parallel programming approaches, specifically MPI, multiprocessing, and threading, will enable 

the evaluation of RYU and POX as well as the assessment of the network controller's effectiveness in managing 

a larger number of switches. 

 
2. METHOD 

2.1.  Research topology and scenario 

In this study, the SDN network simulation was conducted on a computer running the Ubuntu 20.04 

LTS operating system (OS), which is equipped with an Intel® CoreTM i5-10400 CPU clocked at 2.90 GHz, 8 

GB RAM, and a 240 GB SSD as storage media. To ensure the success of this research, several tools were used 

including the Mininet [17] emulation system which uses a linear topology for network simulation. RYU and 

POX [14] were chosen as platforms to implement parallel programming techniques on SDN networks [18], 

while TOP was used to monitor hardware usage such as program execution time, CPU usage, and memory 

usage [19]. The decision to use the linear topology shown in Figure 1 is based on its simplicity and effectiveness 

in organizing the network. In this topology, switches are connected sequentially to create a straight path [18]. 

This setup is particularly suitable when connecting multiple switches in series as seen in SDN models involving 

30 or 50 switches. The linear topology offers ease of setup and management, scalability, efficient bandwidth 

utilization, and reduced network latency [20]. To simulate the network organization in this research study, 

Mininet was used along with RYU (simple switch 13) and POX (learning l2) controllers. To explore different 

types of parallel programming techniques on RYU and POX [21], [22], message passing interface (MPI), 

multiprocessing, and threading are used. Various factors such as execution time, CPU usage, and memory 

usage were tested to evaluate the effectiveness of parallel implementation on RYU and POX controllers [23]. 

The pathfinding test scenario aims to identify all possible delivery routes. For timing testing, a stopwatch 

measures the average time taken by the controller to find a complete path. CPU usage testing uses the TOP 

application to determine the hardware CPU usage percentage (%). Similarly to using TOP, memory usage was 

calculated and expressed as a percentage. The resulting data in text format was extracted and further processed 

[24]. 
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Figure 1. Linear topology of 30 switches and 50 switches on the mininet 

2.2.  Parallel tasks for controller 

The system design that will be used in this research is illustrated in the block diagram in Figure 2. On 

the left side of the block diagram is the network topology created with the Mininet emulator, while the about 

part is the mechanism by which the parallel process takes place and the right part of the block diagram is the 

result generated by the parallel process. Requires initializing the controller and running parallel scripts 

simultaneously. Event handlers are then implemented to manage switch connection events, where the 

corresponding data is obtained from the switch. In handling the data generated by the switches, each script 

executes a parallel task for each connected switch by issuing a request for description statistics using an 

appropriate parallel method such as MPI, multiprocessing, or threading. After receiving the request, the script 

waits for a response from the switch and uses the appropriate function to process the description statistics 

received from the switch. After that, the description statistics will be displayed on the terminal console, the 

process is done in parallel based on the switches connected to the controller. Monitoring the progress of parallel 

tasks relies heavily on output messages and logging. Regardless of the different parallel methods used, the 

fundamental aspects of initialization, event handling, switch feature processing, parallel tasks, and response 

management remain consistent, reflecting an overarching framework for switch control on the network through 

a designated controller whether it is RYU or POX. 

 

 
Figure 2. System’s block diagram 
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3. RESULT AND DISCUSSION 

3.1.  Execution time program 

The processing time of all hosts was tested 10 times with 30 and 50 switches using RYU and POX, 

respectively. The results are shown in Tables 1-2. This is done to find out how long it takes for the parallel 

application to find all paths in the linear network topology that has been built previously. The average time 

taken to run 10 tests with 30 switches on RYU was 21 seconds and 39 milliseconds. RYU controllers that use 

parallel programming techniques, such as MPI, took 21 seconds and 18 milliseconds, multiprocessing took 21 

seconds and 25 milliseconds, and threading took 21 seconds and 20 milliseconds. The average execution time 

of 10 tests with 50 switches on RYU is 1 minute 53 seconds, 1 minute 53 seconds for RYU controllers using 

parallel programming techniques such as MPI, multiprocessing takes 1 minute 53 seconds, and threading takes 

1 minute 51 seconds. The average execution time is based on 10 tests with 30 switches on POX, with a duration 

of 49 seconds and 24 milliseconds. Next are POX controllers that implement parallel programming, such as 

MPI, which takes 49 seconds and 19 milliseconds, multiprocessing takes 49 seconds and 24 milliseconds and 

threading, takes 49 seconds and 14 milliseconds. The average execution time of 10 tests with 50 switches on 

POX was 4 minutes 59 seconds. Controllers that use parallel programming, such as MPI, took 4 minutes and 

59 seconds, multiprocessing took 5 minutes and threading took 5 minutes. At 30 and 50 switches, the average 

time difference between RYU and POX is very different. 
According to the research results [3], in the RYU test 30 switches had the fastest average execution 

time. In the MPI test, it took 21 seconds and 18 milliseconds, which was the fastest time. In the POX test with 

30 switches, threading was recorded the fastest with a time of 49 seconds and 14 milliseconds. On the test with 

50 RYU switches, threading was the fastest, taking 1 minute, 51 seconds. In the test with 50 POX switches, 

POX was the fastest, taking 4 minutes, 59 seconds. From the results of testing with 30 switches, this study 
shows that RYU has a faster execution time than POX, and the results of testing with 50 switches also show 

that RYU has a faster execution time than POX. 
 

Table 1. Results on RYU and POX using 30 switches 

 
Table 2. Results on RYU and POX using 50 switches 

Experiment 

Number 
RYU MPI Multiprocessing Threading 

1 0:22:00 0:20:51 0:21:40 0:21:03 

2 0:24:05 0:21:06 0:21:01 0:21:35 

3 0:23:06 0:20:47 0:21:18 0:21:39 
4 0:22:53 0:21:17 0:21:31 0:21:07 

5 0:22:07 0:21:32 0:21:14 0:21:22 

6 0:20:19 0:21:02 0:21:14 0:21:03 

7 0:20:32 0:21:17 0:21:56 0:21:17 

8 0:21:01 0:21:07 0:21:05 0:21:20 
9 0:20:29 0:22:19 0:21:37 0:21:36 

10 0:20:01 0:21:39 0:21:37 0:21:13 

Average 0:21:39 0:21:18 0:21:25 0:21:20 

Experiment 

Number 
POX MPI Multiprocessing Threading 

1 0:47:30 0:50:07 0:48:52 0:49:31 

2 0:49:14 0:48:52 0:49:09 0:49:04 

3 0:50:00 0:49:39 0:48:51 0:49:36 

4 0:49:12 0:49:31 0:49:24 0:49:34 

5 0:49:30 0:49:26 0:48:40 0:48:58 
6 0:49:15 0:49:12 0:50:44 0:48:57 

7 0:49:33 0:47:26 0:49:09 0:49:09 

8 0:50:16 0:49:29 0:49:33 0:49:12 

9 0:49:30 0:49:49 0:49:54 0:49:12 

10 0:50:00 0:49:38 0:49:47 0:49:04 
Average 0:49:24 0:49:19 0:49:24 0:49:14 

Experiment 

Number 
RYU MPI Multiprocessing Threading 

1 1:53:05 1:53:07 1:52:53 1:51:01 

2 1:53:28 1:53:17 1:53:22 1:51:26 
3 1:52:53 1:53:42 1:52:49 1:51:12 

4 1:53:08 1:53:16 1:53:31 1:51:45 

5 1:53:24 1:53:06 1:53:10 1:50:46 

6 1:53:12 1:53:29 1:53:14 1:51:30 

7 1:52:33 1:52:01 1:52:58 1:52:00 
8 1:52:17 1:53:33 1:52:09 1:51:35 
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3.2.  CPU Usage 

CPU usage testing is done by looking at statistics about the network under test and collecting 

measurement data using TOP. For example, how many CPU usage results are displayed in text format. Once 

the data is collected, it is processed and calculated to find out what the average CPU usage is. From the data in 

Table 5-6, it can be seen how the testing of CPU usage at 30 and 50 switches differs. RYU uses 40% of the 

CPU when there are 30 switches. Controllers that use parallel programming, such as MPI, use 41%, 

multiprocessing uses 9%, and threading uses 39%. And at 30 switches using POX, it requires 53% of the CPU, 

followed by controllers using parallel programming such as MPI, which uses 54%, multiprocessing uses 54%, 

and threading uses 53%. At 50 switches using RYU, it takes 48% of the CPU, while controllers using parallel 

programming such as MPI use 50%, multiprocessing uses 11%, and threading uses 50%. In the case of using 

50 POXs, 62% of the CPU is required. Controllers that use parallel programming such as MPI and 

multiprocessing use 61% of the CPU, and threading uses 62%. From the results of testing CPU usage with 

RYU and POX at 30 and 50 switches, the results are different. 

The results show in Figure 3-4 that the CPU is used the least when multiprocessing is used, no matter 

how many controls or RYU switches are used. This is possible because each new process uses different CPU 

resources. But with multiprocessing, the program can use all CPU cores, which speeds up performance and 

processing. With multiprocessing, programs can run on more than one CPU at the same time [25]. In the case 

of RYU, with 30 switches, multiprocessors allow data processing to be performed on different CPUs 

simultaneously. This speeds up processing and reduces CPU utilization [26]. In multiprocessors, how the CPU 

is used also depends on how many CPUs are available and what they can do. If there are only a few CPUs 

available, multiprocessing techniques may not use less CPU time than other methods [27]. When using 

threading, CPUs tend to be used more than when using multiprocessing. However, when using threading, 

program threads can run at the same time in one process, which does not use too much CPU and makes it easier 

to start a new process [28]. On the other hand, when using MPI, CPU usage tends to be higher than when using 

threading or multiprocessing. This is because MPI uses connections between processes (in this case, processes 

on different nodes) to process data simultaneously. This connection process uses a lot of overheating, which 

means the CPU will be used more [29]. Multiprocessing has lower performance compared to threading and 

MPI in terms of CPU consumption due to scalability limitations, IO-bound tasks, memory usage, and the 

presence of Global Interpreter Lock (GIL) in Python. Multiprocessing can effectively use multiple cores, but 

its scalability is limited by the number of cores available. For IO-bound tasks where the bottleneck is not the 

CPU, multiprocessing may not have an advantage over threading and MPI. Multiprocessing usually requires 

more memory compared to threading due to the separate memory space for each process. GIL limits parallel 

execution of threads within a single process, so only one thread can be executed at a time, even with multiple 

threads created. 

 
Table 5. CPU utilization results from RYU with switches 30 and 50 

 
Table 6. CPU utilization results from POX with switches 30 and 50 

Experiment 

Number 
RYU MPI Multiprocessing Threading 

9 1:52:16 1:53:28 1:52:54 1:51:49 

10 1:54:04 1:53:15 1:53:29 1:51:37 

Average 1:53:02 1:53:13 1:53:03 1:51:28 

Experiment 

Number 
POX MPI Multiprocessing Threading 

1 4:58:20 5:00:19 5:00:11 5:00:00 

2 4:58:01 4:59:16 5:00:31 5:01:22 

3 5:00:01 5:00:38 5:00:23 5:00:47 
4 4:59:09 4:58:02 4:59:23 4:58:28 

5 5:00:01 5:02:16 4:59:41 5:00:14 

6 4:59:08 4:59:40 4:59:02 4:59:33 

7 4:59:28 4:59:16 5:01:18 5:00:19 

8 4:58:27 4:59:18 5:00:45 5:00:46 
9 4:58:56 4:59:22 5:00:15 5:00:02 

10 4:59:34 5:00:27 4:59:29 4:59:01 

Average 4:59:07 4:59:51 5:00:06 5:00:03 

Experiment 

Type 
RYU MPI Multiprocessing Threading 

CPU Usage 30 

Switch 

40% 41% 9% 39% 

CPU Usage 50 

Switch 

48% 50% 11% 50% 
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Figure 3. Diagram CPU Usage 30 Switches 

 

 
Figure 4. Diagram CPU Usage 50 Switches 

3.3.  Memory Usage 

Memory usage testing is a way to find out how memory is used on the gadget being used. Memory 

usage testing is done by using TOP to collect data, which is then displayed in text format. The data is then 

processed, and calculations are made to find out how much memory is used on average, which is given in the 

form of percent (%). The test results are shown in Tables 7-8, which show that there is a big difference between 

how much memory RYU and POX use on switches 30 and 50. Using RYU, switch 30 uses 60% of the available 

memory. Controllers that use parallel programming, such as MPI, use 70%, multiprocessing uses 13%, and 

threading uses 60%. And on switch 30 that uses POX, it takes up 30% of the memory. Controllers that use 

parallel programming, such as MPI, use 40%, multiprocessing uses 30%, and threading uses 30%. In contrast, 

50 switches that use RYU use 60% memory. Controllers that use parallel programming, such as MPI, use 80%, 

multiprocessing uses 13%, and threading uses 60%. For 50 switches that use POX, 30% memory is required. 

Controllers that use parallel programming, such as MPI, use 40%, multiprocessing uses 30%, and threading 

uses 30%. The memory usage test results show that the numbers for RYU and POX at 30 switches and 50 

switches are not the same. 

Experiment 

Type 
POX MPI Multiprocessing Threading 

CPU Usage 30 

Switch 

53% 54% 54% 53% 

CPU Usage 50 

Switch 

62% 61% 61% 62% 
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According to the research results in Figure 5-6, in RYU with 30 switches, multiprocessing uses the 

least amount of memory at 13%, while threading and RYU use the same amount at 60%, and MPI uses the 

most at 70%. Multiprocessing uses the least amount of memory on RYUs with 50 switches, at 13%. While 

threading and RYU use the same amount at 60%, MPI uses the most at 70%. Multiprocessing uses the least 

amount of memory on RYU with 50 switches, at 13%. RYU and threading use the same amount of memory at 

60%, while MPI uses the most at 80%. Threading and RYU use the same amount of memory, 60%, and MPI 

uses the most memory, 80%. Multiprocessing uses the least amount of memory on RYU with 50 switches, 

which is 13%. When testing 30 or 50 switches in POX, all three parallel methods use the same amount of 

memory, 30%. MPI uses 40% memory, which is the largest amount. Different parallel techniques use different 

amounts of memory due to things like the type of data being processed, the size of the data being processed, 

the complexity of the computer, and how each parallel technique works. In general, MPI requires more memory 

because it uses communication between processes (in this case, processes on different nodes) to process data 

in parallel and because each process needs its own memory [29]. This connection process allows for 

overheating, which means more memory is used. On the other hand, each process in multiprocessing needs its 

own memory, while threading runs in a single process and uses the same memory [25]. Multiprocessing has 

lower power consumption compared to threading and MPI because communication between threads is faster 

than communication between processes, especially when using shared memory. In multiprocessing, a separate 

memory space for each process requires data to be copied between processes, which can be memory intensive. 

Threads share the same memory space, allowing them to share memory and data without the need for copying. 

This reduces memory consumption compared to multiprocessing, where each process has its own memory 

space. In multiprocessing, when passing data between processes, the data needs to be copied, which can be 

expensive in terms of memory usage. This is especially important when dealing with large data sets or objects. 

Multiprocessing in Python has limited shared memory facilities provided by the operating system. By default, 

no memory is shared between processes, and data needs to be explicitly shared, which can add complexity and 

overheat to memory management. 
  

Table 7. Memory usage results from RYU with switches 30 and 50 

 
Table 8. Memory usage results from POX with switches 30 and 50 

 

 
Figure 5. Diagram Memory Usage 30 Switches 

 

Experiment 

Type 

RYU MPI Multiprocessing Threading 

Memory Usage 

30 Switch 

60% 70% 13% 60% 

Memory Usage 
50 Switch 

60% 80% 13% 60% 

Experiment 

Type 

POX MPI Multiprocessing Threading 

Memory Usage 

30 Switch 

30% 40% 30% 30% 

Memory Usage 
50 Switch 

30% 40% 30% 30% 
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Figure 6. Diagram Memory Usage 50 Switches 

 

4. CONCLUSION 

Research findings show that RYU shows superior speed performance in terms of execution time. 

Specifically, RYU's mean time duration of 21 seconds outperformed POX's mean time duration of 49 seconds 

in the 30-switch test. In addition, RYU's mean time duration of 1 minute 52 seconds outperformed POX's mean 

time duration of 4 minutes 59 seconds on the 50-switch test. In addition, RYU offers superior CPU utilization 

compared to POX as evidenced by an overall average of 32% compared to an overall average of 53% POX for 

30-switch tests. Similarly, RYU showed better CPU utilization with an overall average of 40% compared to 

POX's overall average of 61% for a 50-switch test. 

However, it should be noted that POX excels in terms of memory usage with an overall average of 

30%, whereas RYU has an overall average memory usage rate of 50% for 30 and 50 switch tests. In conclusion, 

implementing parallel programming on SDN controllers such as RYU and POX can significantly improve 

speed performance, especially in terms of execution time. However, this increase comes at the expense of 

increased CPU and memory usage. Therefore, we recommend considering parallel implementations of SDN 

controllers when dealing with a large number of switches. Ultimately, the choice between these platforms 

depends on the requirements of the specific use case as each platform has its own advantages and disadvantages 

in terms of performance and resource utilization. 
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