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1. INTRODUCTION

RYU and POX are popular network controller options used to control software defined networks
(SDN). However, the performance of these network controllers has limitations when handling networks with
a larger number of switches and complexity [1], [2]. The performance of RYU and POX has compared in a
number of previous studies. Some of these studies [3], [4] have shown that RYU excels in managing complex
networks. However, when dealing with a large number of switches, it is evident that RYU and POX have some
serious limitations. These controllers have difficulty keeping up with the volume of data generated by a large
number of switches, which can degrade the performance of the network [5]. Researchers have suggested using
parallel programming techniques, including MPI, multiprocessing, and threading, to improve the efficiency of
RYU and POX. These methods can better utilize the CPU's processing capabilities [6]-[8] to improve the
performance of these two controllers [9] in terms of processing speed and memory allocation. The effectiveness
of parallel methods in improving the efficiency of network controllers has not been thoroughly investigated.
Applying parallel programming techniques such as MPI, multiprocessing, and threading are suggestions given
by researchers. So, the purpose of this study is to find out how RYU and POX differ in terms of how well
parallel programming techniques such as MPI, multiprocessing, and threading can help improve network
controller performance [10], [11]. In this study, we provide an introduction to parallel programming and explain
the benefits of using these techniques for SDN controllers. We also explain how to implement parallel
programming in RYU and POX.

RYU and POX have been extensively studied and compared in terms of their ability to manage
network switches. Examples of research showing the superior performance of RYU in handling very large
network switches can be found in [12], [13]. After comparing RYU and POX, these studies concluded that
RYU is superior in handling large-scale network switches. Similarly, [14] found that RYU outperforms POX
in terms of robustness, efficiency, and field adaptability. According to the analysis from research [4], RYU and
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POX are equally effective in handling network switches. This study compared the performance of both network
controllers under various workloads and found that RYU is superior in handling networks under heavy loads.
To improve their efficiency, network controllers can utilize a method called paralleling. The effectiveness of
parallel methods in improving network performance has been the subject of several research efforts. With
parallel implementation, researchers can apply more processor cores at lower frequencies to more network
controllers, closing the performance gap in multi-controller scenarios, as done in the research referenced in
[15]. Lowering the operating frequency of each core and implementing controllers in parallel results in greater
energy efficiency. For a constant throughput scenario, experimental results showed a 28% improvement in
processor energy efficiency compared to the single-core strategy. Research conducted by [16] performing a
parallel flow installation to mitigate the effects of DoS attacks on software-defined networking (SDN) without
losing the ability to monitor and control network traffic. This approach reduces the effects of DoS attacks by
installing flows in parallel, which reduces control channel traffic and controller utilization.

In this study, the researchers will use parallel programming techniques, specifically MPI,
multiprocessing, and threading. The goal of this research is to advance the understanding of how parallel can
improve the functionality of network controllers. The results obtained from this research will be used in the
development of improved SDN network controller solutions that can proficiently manage more complicated
and extensive networks with higher reliability and efficiency. The researchers will use parallel programming
approaches, namely MPI, multiprocessing, and threading, to compare RYU and POX. The research will also
evaluate the efficacy of the network controller in managing networks with a larger number of switches. The
utilization of parallel programming approaches, specifically MPI, multiprocessing, and threading, will enable
the evaluation of RYU and POX as well as the assessment of the network controller's effectiveness in managing
a larger number of switches.

2. METHOD

2.1. Research topology and scenario

In this study, the SDN network simulation was conducted on a computer running the Ubuntu 20.04
LTS operating system (OS), which is equipped with an Intel® CoreTM i5-10400 CPU clocked at 2.90 GHz, 8
GB RAM, and a 240 GB SSD as storage media. To ensure the success of this research, several tools were used
including the Mininet [17] emulation system which uses a linear topology for network simulation. RYU and
POX [14] were chosen as platforms to implement parallel programming techniques on SDN networks [18],
while TOP was used to monitor hardware usage such as program execution time, CPU usage, and memory
usage [19]. The decision to use the linear topology shown in Figure 1 is based on its simplicity and effectiveness
in organizing the network. In this topology, switches are connected sequentially to create a straight path [18].
This setup is particularly suitable when connecting multiple switches in series as seen in SDN models involving
30 or 50 switches. The linear topology offers ease of setup and management, scalability, efficient bandwidth
utilization, and reduced network latency [20]. To simulate the network organization in this research study,
Mininet was used along with RYU (simple switch 13) and POX (learning 12) controllers. To explore different
types of parallel programming techniques on RYU and POX [21], [22], message passing interface (MPI),
multiprocessing, and threading are used. Various factors such as execution time, CPU usage, and memory
usage were tested to evaluate the effectiveness of parallel implementation on RYU and POX controllers [23].
The pathfinding test scenario aims to identify all possible delivery routes. For timing testing, a stopwatch
measures the average time taken by the controller to find a complete path. CPU usage testing uses the TOP
application to determine the hardware CPU usage percentage (%). Similarly to using TOP, memory usage was
calculated and expressed as a percentage. The resulting data in text format was extracted and further processed
[24].

A Comparison of Ryu and Pox Controllers: A Parallel Implementation (Muhammad Ikhwananda Rizaldi!, 2
Elsa Annas Sonia Yusuf?, Denar Regata Akbi3, Wildan Suharso*)


https://issn.brin.go.id/terbit/detail/1466480524
https://issn.brin.go.id/terbit/detail/1464049910

JOIN | Volume 9 No. 1| June 2024: 1-9

Caontroller

Another 40 switches for 50 switch and
another 20 switches for 30 switch

Figure 1. Linear topology of 30 switches and 50 switches on the mininet

2.2. Parallel tasks for controller

The system design that will be used in this research is illustrated in the block diagram in Figure 2. On
the left side of the block diagram is the network topology created with the Mininet emulator, while the about
part is the mechanism by which the parallel process takes place and the right part of the block diagram is the
result generated by the parallel process. Requires initializing the controller and running parallel scripts
simultaneously. Event handlers are then implemented to manage switch connection events, where the
corresponding data is obtained from the switch. In handling the data generated by the switches, each script
executes a parallel task for each connected switch by issuing a request for description statistics using an
appropriate parallel method such as MPI, multiprocessing, or threading. After receiving the request, the script
waits for a response from the switch and uses the appropriate function to process the description statistics
received from the switch. After that, the description statistics will be displayed on the terminal console, the
process is done in parallel based on the switches connected to the controller. Monitoring the progress of parallel
tasks relies heavily on output messages and logging. Regardless of the different parallel methods used, the
fundamental aspects of initialization, event handling, switch feature processing, parallel tasks, and response
management remain consistent, reflecting an overarching framework for switch control on the network through
a designated controller whether it is RYU or POX.

Controller and Topology Parallel Process Console

Reply is received—>| Reply Handler

Extract necessary information

Switch Features Description
Handler Statistics

- - Create a new process
ﬁ ﬁ <—Send request to contoller— Send Request

Figure 2. System’s block diagram
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3. RESULT AND DISCUSSION

3.1. Execution time program

The processing time of all hosts was tested 10 times with 30 and 50 switches using RYU and POX,
respectively. The results are shown in Tables 1-2. This is done to find out how long it takes for the parallel
application to find all paths in the linear network topology that has been built previously. The average time
taken to run 10 tests with 30 switches on RYU was 21 seconds and 39 milliseconds. RY U controllers that use
parallel programming techniques, such as MPI, took 21 seconds and 18 milliseconds, multiprocessing took 21
seconds and 25 milliseconds, and threading took 21 seconds and 20 milliseconds. The average execution time
of 10 tests with 50 switches on RYU is 1 minute 53 seconds, 1 minute 53 seconds for RYU controllers using
parallel programming techniques such as MPI, multiprocessing takes 1 minute 53 seconds, and threading takes
1 minute 51 seconds. The average execution time is based on 10 tests with 30 switches on POX, with a duration
of 49 seconds and 24 milliseconds. Next are POX controllers that implement parallel programming, such as
MPI, which takes 49 seconds and 19 milliseconds, multiprocessing takes 49 seconds and 24 milliseconds and
threading, takes 49 seconds and 14 milliseconds. The average execution time of 10 tests with 50 switches on
POX was 4 minutes 59 seconds. Controllers that use parallel programming, such as MPI, took 4 minutes and
59 seconds, multiprocessing took 5 minutes and threading took 5 minutes. At 30 and 50 switches, the average
time difference between RYU and POX is very different.

According to the research results [3], in the RYU test 30 switches had the fastest average execution
time. In the MPI test, it took 21 seconds and 18 milliseconds, which was the fastest time. In the POX test with
30 switches, threading was recorded the fastest with a time of 49 seconds and 14 milliseconds. On the test with
50 RYU switches, threading was the fastest, taking 1 minute, 51 seconds. In the test with 50 POX switches,
POX was the fastest, taking 4 minutes, 59 seconds. From the results of testing with 30 switches, this study
shows that RYU has a faster execution time than POX, and the results of testing with 50 switches also show
that RYU has a faster execution time than POX.

Table 1. Results on RYU and POX using 30 switches

Eﬁpjr';:glim RYU MPI Multiprocessing Threading
1 0:22:00 0:20:51 0:21:40 0:21:03
2 0:24:05 0:21:06 0:21:01 0:21:35
3 0:23:06 0:20:47 0:21:18 0:21:39
4 0:22:53 0:21:17 0:21:31 0:21:07
5 0:22:07 0:21:32 0:21:14 0:21:22
6 0:20:19 0:21:02 0:21:14 0:21:03
7 0:20:32 0:21:17 0:21:56 0:21:17
8 0:21:01 0:21:07 0:21:05 0:21:20
9 0:20:29 0:22:19 0:21:37 0:21:36
10 0:20:01 0:21:39 0:21:37 0:21:13
Average 0:21:39 0:21:18 0:21:25 0:21:20
Eﬁplfr::?;m POX MPI Multiprocessing Threading
1 0:47:30 0:50:07 0:48:52 0:49:31
2 0:49:14 0:48:52 0:49:09 0:49:04
3 0:50:00 0:49:39 0:48:51 0:49:36
4 0:49:12 0:49:31 0:49:24 0:49:34
5 0:49:30 0:49:26 0:48:40 0:48:58
6 0:49:15 0:49:12 0:50:44 0:48:57
7 0:49:33 0:47:26 0:49:09 0:49:09
8 0:50:16 0:49:29 0:49:33 0:49:12
9 0:49:30 0:49:49 0:49:54 0:49:12
10 0:50:00 0:49:38 0:49:47 0:49:04
Average 0:49:24 0:49:19 0:49:24 0:49:14
Table 2. Results on RYU and POX using 50 switches
E),(\lpliggﬁm RYU MPI Multiprocessing Threading
1 1:53:05 1:53:07 1:52:53 1:51:01
2 1:53:28 1:53:17 1:53:22 1:51:26
3 1:52:53 1:53:42 1:52:49 1:51:12
4 1:53:08 1:53:16 1:53:31 1:51:45
5 1:53:24 1:53:06 1:53:10 1:50:46
6 1:53:12 1:53:29 1:53:14 1:51:30
7 1:52:33 1:52:01 1:52:58 1:52:00
8 1:52:17 1:53:33 1:52:09 1:51:35
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Eﬁplje;[)r:jnt RYU MPI Multiprocessing Threading
9 1:52:16 1:53:28 1:52:54 1:51:49
10 1:54:04 1:53:15 1:53:29 1:51:37
Average 1:53:02 1:53:13 1:53:03 1:51:28
Eﬁplfrgglim POX MPI Multiprocessing Threading
1 4:58:20 5:00:19 5:00:11 5:00:00
2 4:58:01 4:59:16 5:00:31 5:01:22
3 5:00:01 5:00:38 5:00:23 5:00:47
4 4:59:09 4:58:02 4:59:23 4:58:28
5 5:00:01 5:02:16 4:59:41 5:00:14
6 4:59:08 4:59:40 4:59:02 4:59:33
7 4:59:28 4:59:16 5:01:18 5:00:19
8 4:58:27 4:59:18 5:00:45 5:00:46
9 4:58:56 4:59:22 5:00:15 5:00:02
10 4:59:34 5:00:27 4:59:29 4:59:01
Average 4:59:07 4:59:51 5:00:06 5:00:03

3.2. CPU Usage

CPU usage testing is done by looking at statistics about the network under test and collecting
measurement data using TOP. For example, how many CPU usage results are displayed in text format. Once
the data is collected, it is processed and calculated to find out what the average CPU usage is. From the data in
Table 5-6, it can be seen how the testing of CPU usage at 30 and 50 switches differs. RYU uses 40% of the
CPU when there are 30 switches. Controllers that use parallel programming, such as MPI, use 419%,
multiprocessing uses 9%, and threading uses 39%. And at 30 switches using POX, it requires 53% of the CPU,
followed by controllers using parallel programming such as MPI, which uses 54%, multiprocessing uses 54%,
and threading uses 53%. At 50 switches using RYU, it takes 48% of the CPU, while controllers using parallel
programming such as MPI use 50%, multiprocessing uses 11%, and threading uses 50%. In the case of using
50 POXs, 62% of the CPU is required. Controllers that use parallel programming such as MPI and
multiprocessing use 61% of the CPU, and threading uses 62%. From the results of testing CPU usage with
RYU and POX at 30 and 50 switches, the results are different.

The results show in Figure 3-4 that the CPU is used the least when multiprocessing is used, no matter
how many controls or RYU switches are used. This is possible because each new process uses different CPU
resources. But with multiprocessing, the program can use all CPU cores, which speeds up performance and
processing. With multiprocessing, programs can run on more than one CPU at the same time [25]. In the case
of RYU, with 30 switches, multiprocessors allow data processing to be performed on different CPUs
simultaneously. This speeds up processing and reduces CPU utilization [26]. In multiprocessors, how the CPU
is used also depends on how many CPUs are available and what they can do. If there are only a few CPUs
available, multiprocessing techniques may not use less CPU time than other methods [27]. When using
threading, CPUs tend to be used more than when using multiprocessing. However, when using threading,
program threads can run at the same time in one process, which does not use too much CPU and makes it easier
to start a new process [28]. On the other hand, when using MPI, CPU usage tends to be higher than when using
threading or multiprocessing. This is because MPI uses connections between processes (in this case, processes
on different nodes) to process data simultaneously. This connection process uses a lot of overheating, which
means the CPU will be used more [29]. Multiprocessing has lower performance compared to threading and
MPI in terms of CPU consumption due to scalability limitations, 10-bound tasks, memory usage, and the
presence of Global Interpreter Lock (GIL) in Python. Multiprocessing can effectively use multiple cores, but
its scalability is limited by the number of cores available. For 10-bound tasks where the bottleneck is not the
CPU, multiprocessing may not have an advantage over threading and MPI. Multiprocessing usually requires
more memory compared to threading due to the separate memory space for each process. GIL limits parallel
execution of threads within a single process, so only one thread can be executed at a time, even with multiple
threads created.

Table 5. CPU utilization results from RYU with switches 30 and 50

Experiment

Type RYU MPI Multiprocessing Threading
CPU Usage 30 40% 41% 9% 39%
Switch
CPU Usage 50 48% 50% 11% 50%
Switch

Table 6. CPU utilization results from POX with switches 30 and 50
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Exp_lg;gzent POX MPI Multiprocessing Threading

CPU Usage 30 53% 54% 54% 53%
Switch

CPU Usage 50 62% 61% 61% 62%
Switch
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Figure 4. Diagram CPU Usage 50 Switches

3.3. Memory Usage

Memory usage testing is a way to find out how memory is used on the gadget being used. Memory
usage testing is done by using TOP to collect data, which is then displayed in text format. The data is then
processed, and calculations are made to find out how much memory is used on average, which is given in the
form of percent (%). The test results are shown in Tables 7-8, which show that there is a big difference between
how much memory RYU and POX use on switches 30 and 50. Using RYU, switch 30 uses 60% of the available
memory. Controllers that use parallel programming, such as MPI, use 70%, multiprocessing uses 13%, and
threading uses 60%. And on switch 30 that uses POX, it takes up 30% of the memory. Controllers that use
parallel programming, such as MPI, use 40%, multiprocessing uses 30%, and threading uses 30%. In contrast,
50 switches that use RYU use 60% memory. Controllers that use parallel programming, such as MPI, use 80%,
multiprocessing uses 13%, and threading uses 60%. For 50 switches that use POX, 30% memory is required.
Controllers that use parallel programming, such as MPI, use 40%, multiprocessing uses 30%, and threading
uses 30%. The memory usage test results show that the numbers for RYU and POX at 30 switches and 50
switches are not the same.
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According to the research results in Figure 5-6, in RYU with 30 switches, multiprocessing uses the
least amount of memory at 13%, while threading and RYU use the same amount at 60%, and MPI uses the
most at 70%. Multiprocessing uses the least amount of memory on RYUs with 50 switches, at 13%. While
threading and RYU use the same amount at 60%, MPI uses the most at 70%. Multiprocessing uses the least
amount of memory on RYU with 50 switches, at 13%. RYU and threading use the same amount of memory at
60%, while MPI uses the most at 80%. Threading and RYU use the same amount of memory, 60%, and MPI
uses the most memory, 80%. Multiprocessing uses the least amount of memory on RYU with 50 switches,
which is 13%. When testing 30 or 50 switches in POX, all three parallel methods use the same amount of
memory, 30%. MPI uses 40% memory, which is the largest amount. Different parallel techniques use different
amounts of memory due to things like the type of data being processed, the size of the data being processed,
the complexity of the computer, and how each parallel technique works. In general, MPI requires more memory
because it uses communication between processes (in this case, processes on different nodes) to process data
in parallel and because each process needs its own memory [29]. This connection process allows for
overheating, which means more memory is used. On the other hand, each process in multiprocessing needs its
own memory, while threading runs in a single process and uses the same memory [25]. Multiprocessing has
lower power consumption compared to threading and MPI because communication between threads is faster
than communication between processes, especially when using shared memory. In multiprocessing, a separate
memory space for each process requires data to be copied between processes, which can be memory intensive.
Threads share the same memory space, allowing them to share memory and data without the need for copying.
This reduces memory consumption compared to multiprocessing, where each process has its own memory
space. In multiprocessing, when passing data between processes, the data needs to be copied, which can be
expensive in terms of memory usage. This is especially important when dealing with large data sets or objects.
Multiprocessing in Python has limited shared memory facilities provided by the operating system. By default,
no memory is shared between processes, and data needs to be explicitly shared, which can add complexity and
overheat to memory management.

Table 7. Memory usage results from RYU with switches 30 and 50

Experiment RYU MPI Multiprocessing Threading
Type
Memory Usage 60% 70% 13% 60%
30 Switch
Memory Usage 60% 80% 13% 60%
50 Switch

Table 8. Memory usage results from POX with switches 30 and 50

Experiment POX MPI Multiprocessing Threading
Type
Memory Usage 30% 40% 30% 30%
30 Switch
Memory Usage 30% 40% 30% 30%
50 Switch

Memory usage with 30 switches
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4. CONCLUSION

Research findings show that RYU shows superior speed performance in terms of execution time.
Specifically, RYU's mean time duration of 21 seconds outperformed POX's mean time duration of 49 seconds
in the 30-switch test. In addition, RYU's mean time duration of 1 minute 52 seconds outperformed POX's mean
time duration of 4 minutes 59 seconds on the 50-switch test. In addition, RY U offers superior CPU utilization
compared to POX as evidenced by an overall average of 32% compared to an overall average of 53% POX for
30-switch tests. Similarly, RYU showed better CPU utilization with an overall average of 40% compared to
POX's averall average of 61% for a 50-switch test.

However, it should be noted that POX excels in terms of memory usage with an overall average of
30%, whereas RYU has an overall average memory usage rate of 50% for 30 and 50 switch tests. In conclusion,
implementing parallel programming on SDN controllers such as RYU and POX can significantly improve
speed performance, especially in terms of execution time. However, this increase comes at the expense of
increased CPU and memory usage. Therefore, we recommend considering parallel implementations of SDN
controllers when dealing with a large number of switches. Ultimately, the choice between these platforms
depends on the requirements of the specific use case as each platform has its own advantages and disadvantages
in terms of performance and resource utilization.
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