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1. INTRODUCTION

Time series prediction is an important problem in many fields, and deep learning has emerged
as a promising approach for improving prediction accuracy. However, the best deep learning models
and strategies for multi-step vector output prediction of time series remain unclear. Several studies have
investigated this problem, but the findings have been mixed. For the specified time series problems,
Chandra et al. [1] discovered that the bidirectional and encoder-decoder LSTM network gives the best
performance in accuracy. Yunpeng et al. [2] found that LSTM RNN outperforms traditional models. An
and Anh [3] found that the DirREC strategy is better than all other strategies for multi-step ahead
forecasting using neural network.

Other studies have focused on the common deep learning architectures used for time series
prediction, finding that artificial neural networks (ANNs), long short-term memory (LSTM) models [4],
and temporal-convolutional neural networks (TCNNs) [5] are among the most common methods. Lara-
Benitez et al. [6] found that the most accurate forecasts are obtained with LSTMs, while CNNs are more
efficient. Torres el al. [7] found that feed forward networks, recurrent neural networks (RNNs), and
convolutional neural networks (CNNs) are the most common deep learning architectures used for time
series prediction [8].

Moreover, feature engineering and data preprocessing have been found to improve the accuracy
of time series prediction models. Shen et al. [9] found that the SeriesNet model, which uses deep learning,
can learn features of time series data in different interval lengths and results in higher predictive
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accuracy compared to models using fixed time intervals. It has been discovered by Li et al. [10] that LSTM
is more sensitive to feature fusion than SVM, and that the feature's position in the feature sequence can
have a noticeable impact on the outcomes of the forecast.

Incorporating external data and domain knowledge is another important consideration when
building time series prediction models. DTr-CNN framework [11] and SARIMA [12] are promising
approaches for this, with the former being a transfer learning framework with deep architectures and
the latter being a statistical method that can outperform other machine learning algorithms.

Additionally, some studies have explored ways of incorporating uncertainty and variability into
time series prediction models. Using a general concept of uncertainty, Rufdwurm et al. [13] and Li et al.
[14] discovered that the distribution of multi-step ahead forecasts can be approximated by Monte Carlo
simulation, respectively.

In conclusion, while deep learning models hold promise for time series forecasting, there is still
much work to be done to determine the best models and strategies for multi-step vector output
prediction [1]. The literature provides a wealth of knowledge and suggestions for improving time series
prediction accuracy, and future research should continue to explore these approaches and assess their
effectiveness in real-world applications.

Some studies have also explored the use of other machine learning techniques in combination
with deep learning to further improve accuracy. Zhang et al. [15] found that their proposed model is
superior to other baseline models for time series forecasting tasks. Data retrieval via inferring time-
dependent correlation structures was demonstrated by Rosato et al. [16] using their suggested model.
When testing their suggested model on several common time series datasets, Shen et al. [9] discovered
that it has improved forecasting accuracy and stability.

Despite the promise of deep learning, it is important to note that different models may be best
suited for different types of data. For example, Xuan et al. [17] provided detailed results achieved by
different indexes, with accuracy, precision, recall, and F1 score being important metrics to consider
when evaluating performance. Time series forecasting also takes uncertainty assessment into account.
For instance, uncertainties may arise from the presence of noisy data, the difficulty of selecting an
appropriate model, challenges in accurately estimating model parameters, unpredictability of future
events, complexity and variability of human behavior, or the difficulty of modeling complex data trends
such as seasonality or long-term trends. A novel end-to-end Bayesian deep model for time series
prediction with uncertainty estimation was suggested by Zhu and Laptev [18].

Though deep learning models have proven useful for predicting time series, it is unclear which
models and methods are best for predicting multi-step vector outputs. Terzi et al. [19] proposed a
method for building multi-step-ahead prediction models for linear systems using past input-output data.
McElroy and Mc Cracken [20] developed the theory of multi-step-ahead forecasting for vector time
series that exhibit temporal nonstationarity and co-integration. Bao et al. [21] proposed a novel
approach for multi-step-ahead time series prediction using multiple-output support vector regression
(M-SVR) with multiple-input multiple-output (MIMO) prediction strategy. There is still a wealth of
limitations dealing with uncertainty and variability, and machine learning techniques to boost accuracy
available in the published literature. In order to identify the optimal method for multi-stage vector
output prediction of time series using deep learning, more study is required.

To address the problem of multi-step vector output prediction of time series using deep
learning, we propose a novel detection method called EMA LSTM. The EMA LSTM method is an extension
of the LSTM network that incorporates an exponential moving average (EMA) smoothing algorithm to
improve the accuracy of multi-step vector output prediction. The EMA LSTM method was designed to
address the limitations of existing methods such as LSTM, GRU, RNN, and CNN by improving the stability
and robustness of the model, particularly for noisy and non-stationary data.

Our proposed EMA LSTM method offers several contributions. First, it is capable of modeling
complex temporal patterns in time series data, making it particularly useful for real-world applications
such as financial forecasting and weather prediction. Second, it is robust to noisy and non-stationary
data, which are common in many real-world scenarios. Third, it offers a stable and reliable method for
multi-step vector output prediction, which is essential for accurate and trustworthy forecasting.

As for the rest of the document, it is structured as follows. Our experimental setup and details
on the dataset we used are provided in the Methods part, where we also outline the EMA LSTM approach.
We show and analyze experimental results acquired using the proposed method and compare them to
the results of the other deep learning models in the Result and Discussion section. In this section, we
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draw conclusions about the findings and discuss the potential applications of the proposed method.
Finally, we summarize the paper's contributions and point the way for future study in the final part.

2. METHOD
2.1. Mathematical Concepts

Exponential Moving Average (EMA): EMA is a smoothing algorithm used to reduce the noise and
variation in time series data. It gives more weight to recent data points while discounting older data
points. The EMA at time t, denoted as EMA(t), is computed in (1) as follows:

EMA(t) =a*xX(@t)+ (1 —a)* EMA(t—1) (D

where X (t) is the input value at time t, EMA(t — 1) is the EMA at the previous time step, and « is the
smoothing factor. a is a value between 0 and 1 and determines the weight given to the current value
compared to previous values. There are some different approaches to determine «a for calculating the
EMA. Mirkamali [22] proposed the maxima nomination sampling (MNS) method and Khan et al. [23]
proposed an EWMA control chart for monitoring exponential distributed quality characteristics and
derived the upper and lower control limits using the mean and variance of EWMA statistics. You et al.
[24] examined the EWMA chart with estimated process parameters and suggested optimal design
procedures for minimizing the out-of-control median run length and expected median run length of the
EWMA chart with estimated process parameters.

Long Short-Term Memory (LSTM): LSTM is a subclass of recurrent neural network (RNN) that can
represent causal relationships over extended periods of time. In it, barriers regulate the entry and exit
of data into and out of memory cells, allowing for long-term data storage. LSTM model parameters are
as shown in (2).

ip = o(W;x [he_q,x¢] + by)
fe= O'(Wf * [heq, xe] + bf)
0 = (W, * [he_1, X¢] + by)
Ct = ft * ¢e—q + iy x tanh(W, * [he_y, x| + b.)

h; = o; * tanh(c;) (2)
where i, f;, and o, are the input, forget, and output gates, respectively, while c; and h; are the cell state
and hidden state, respectively. W;, We, W, and W, are the weight matrices, b;, bf, b,, and b, are the bias
terms, and x; is the input at time t.

EMA LSTM: EMA LSTM is an extension of the LSTM model that incorporates the EMA smoothing
algorithm to improve the accuracy of multi-step vector output prediction of time series. The primary
difference between standard LSTM and EMA-LSTM lies in how the output is smoothed in EMA-LSTM. In
standard LSTM, the model predicts the output directly based on the hidden state of the LSTM cells.
However, in EMA-LSTM, the output is smoothed using the EMA algorithm. The EMA takes into account
previous predictions and applies a weighting scheme to give more importance to recent predictions,
resulting in a smoother output. The EMA LSTM equations are as in (3):

it = o(W; * [hy_y, EMA(x,)] + b;)
fe= U(Wf * [he—1, EMA(x,)] + bf)
0 = o(W, * [h_y, EMA(x)] + b,)
ct = fi * €e—1 + g x tanh(W, * [he_y, EMA(x,)] + bc)
h: = o; * tanh(c;) (3)

where EMA(x,) is the EMA of the input at time t.
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2.2. EMA LSTM Method

Specifically, this study employs an EMA LSTM technique that makes use of a two-layer architecture
consisting of 128 LSTM units. We determine 128 LSTM units through a process of trial and error, where
different numbers of units were tested to find a balance between model complexity and generalization
capability. To avoid overfitting, an additional dropout layer is linked to the input layer. To train the
model, we use stochastic gradient descent (SGD) with a 0.001-rate of learning and a 32-batch size. After
some trial and error with the validation group, we settled on a value of 0.3 for the EMA smoothing factor.

2.3. Data Preprocessing

To conduct our research, we obtained the daily stock market prices of Microsoft Corporation (MSFT)
between the period of February 1, 2013, and February 17, 2023, from Yahoo Finance in a CSV format. As
a preliminary step, we used MinMax scaler to transform the data so that it ranged from 0 to 1. Finally,
we applied an 80-10-10 split to the data to create separate training, validation, and test groups. This data
split was considered to strike a balance between having enough data for training and validation, while
also having sufficient data to reliably test the model's performance. Models were trained on the training
set, validated on the validation set to fine-tune hyperparameters and avoid overfitting, and tested on a
separate dataset.

2.4. Comparison Methods

We compared the results of the LSTM, Gated Recurrent Unit (GRU), RNN, and Convolutional Neural
Network models, as well as the proposed EMA LSTM technique, when applied to time series prediction
(CNN). These models were chosen because they are widely employed deep learning frameworks for time
series prediction.

When it comes to time series prediction, LSTM is a common RNN architecture that has been shown
to be effective. The GRU model is a simplified version of the LSTM that can be trained in less time. The
output from the prior time step is fed back into a recurrent neural network (RNN), a simple but effective
neural network architecture for modeling time series data. As a type of neural network design, CNN is
typically employed for image recognition tasks, but it can also be used with time series data by modeling
it as a one-dimensional image.

2.5. Training and Evaluation

The performance of the models was then measured against the test group. Root-mean-squared-
error, mean-absolute-error, mean-percentage error, and R-squared (R2) were some of the performance
measures we used to assess the models. The root-mean-squared error (RMSE) and the mean absolute
percentage error (MAPE) both assess how far off the mark your predictions were. The absolute error
between the forecast and the observed value is measured by the mean absolute error (MAE), while the
percentage of the dependent variable's variance explained by the independent variable is quantified by
the coefficient of determination (R2). These measurements were used to evaluate the efficiency of the
proposed EMA LSTM technique and to make comparisons between the various models' outputs.

3. RESULT AND DISCUSSION
3.1. Performance of EMA LSTM Method

On the test set, we used inputs from 60, 90, and 120 days in the past to make predictions for the next
20 and 30 days, and we compared the results to an existing LSTM technique. Table 1 summarizes the
findings.

Table 1: Performance of EMA LSTM Method on Test Set

Model Input/Output RMSE MAPE MAE R2

EMA LSTM 60/20 0.032 2.85% 0.021 0.95

EMA LSTM 60/30 0.038 3.21% 0.026 0.92
Multi-Step Vector Output Prediction of Time Series Using EMA LSTM 110
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EMA LSTM 90/20 0.030 2.66% 0.019 0.96
EMA LSTM 90/30 0.035 2.98% 0.023 0.93
EMA LSTM 120/20 0.028 2.49% 0.017 0.97
EMA LSTM 120/30 0.033 2.82% 0.021 0.94

The EMA LSTM model exhibits notable performance across various input/output configurations,
displaying diminished prediction errors and substantial predictive capability. An augmentation of the
input length generally results in enhanced performance, implying that augmenting the model with more
historical information augments its capacity for predictive accuracy. Conversely, a marginal rise in
performance metrics is observed when extending the output length, indicating a slight decrease in
accuracy when forecasting over an extended time horizon. The range of RMSE values, spanning from
0.028 to 0.038, substantiates the model's propensity for generating relatively low prediction errors
across the diverse configurations examined. Similarly, the MAPE values, varying between 2.49% and
3.21%, indicate that the average prediction error of the model approximates the actual values within the
range of 2.49% to 3.21%. Additionally, the range of MAE values from 0.017 to 0.026 signifies that the
average prediction error of the model deviates by merely 0.017 to 0.026 units from the actual values.
Furthermore, the R2 values ranging from 0.92 to 0.97 affirm the model's capability to explain 92% to
97% of the variance in the output, attesting to its elevated predictive power. Collectively, these findings
corroborate the effectiveness of the EMA LSTM model in accurately predicting the target variable within
the context of the provided time series data. The model's strong performance, with limited prediction
errors and considerable predictive power, coupled with the observed impact of varying input and output
lengths, underscores its potential as a valuable tool for time series prediction tasks.

3.2. Comparison to other methods

Using the same input and output parameters, we compared the effectiveness of the proposed EMA
LSTM technique to that of other deep learning models, such as LSTM, GRU, RNN, and CNN.

Table 2: Comparison of EMA LSTM to LSTM

Model Input/Output RMSE MAPE MAE R2
LSTM 60/20 0.036 3.02% 0.024 0.91
LSTM 60/30 0.041 3.34% 0.028 0.88
LSTM 90/20 0.032 2.77% 0.021 0.94
LSTM 90/30 0.037 3.10% 0.025 0.90
LSTM 120/20 0.031 2.70% 0.019 0.95
LSTM 120/30 0.035 2.97% 0.023 0.92

Table 3: Comparison of EMA LSTM to GRU

Model Input/Output RMSE MAPE MAE R2
GRU 60/20 0.043 3.57% 0.029 0.86
GRU 60/30 0.048 3.91% 0.032 0.83
GRU 90/20 0.039 3.28% 0.026 0.89
GRU 90/30 0.044 3.61% 0.030 0.86
GRU 120/20 0.038 3.16% 0.025 0.90
GRU 120/30 0.042 3.48% 0.028 0.87

Table 4: Comparison of EMA LSTM to RNN

Model Input/Output RMSE MAPE MAE R2
RNN 60/20 0.050 4.11% 0.034 0.81
RNN 60/30 0.056 4.64% 0.038 0.78
RNN 90/20 0.045 3.72% 0.029 0.85
RNN 90/30 0.050 4.16% 0.034 0.81
RNN 120/20 0.043 3.57% 0.027 0.87
RNN 120/30 0.048 3.94% 0.032 0.84

Table 5: Comparison of EMA LSTM to CNN

Model Input/Output RMSE MAPE MAE R2
CNN 60/20 0.047 3.91% 0.032 0.83
CNN 60/30 0.054 4.43% 0.037 0.79
CNN 90/20 0.042 3.46% 0.028 0.86
CNN 90/30 0.048 3.92% 0.032 0.83
CNN 120/20 0.040 3.28% 0.022 0.89
CNN 120/30 0.045 3.71% 0.025 0.85
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We can see from Table 2 that the LSTM model is the closest competitor to the EMA LSTM method,
but it still performs worse in terms of all performance metrics. The GRU model performs worse than
LSTM, RNN, and CNN. The RNN and CNN models perform worse than LSTM and EMA LSTM in terms of
all performance metrics.

Across all input/output configurations, the EMA-LSTM consistently achieves lower values for RMSE,
MAPE, and MAE compared to the LSTM model. This signifies that the EMA-LSTM method generates
predictions that are closer to the actual values, resulting in lower prediction errors. For instance, when
considering the 60/20 input/output configuration, the EMA-LSTM achieves an RMSE of 0.032, while the
LSTM model achieves 0.036. Similarly, the MAPE and MAE values for the EMA-LSTM are consistently
lower, indicating better accuracy.

Furthermore, the R2 values, which measure the model's ability to explain the variance in the output,
are consistently higher for the EMA-LSTM compared to the LSTM model. Higher R2 values signify that
the EMA-LSTM captures a larger proportion of the variability in the target variable. For instance, in the
120/20 input/output configuration, the EMA-LSTM achieves an R2 value of 0.97, while the LSTM model
achieves 0.95.

These findings highlight that the EMA-LSTM method exhibits notable superiority over the LSTM
model in multi-step vector output prediction of time series data. By incorporating the EMA smoothing
algorithm, the EMA-LSTM enhances the accuracy and stability of predictions. This suggests that the
EMA-LSTM approach holds promise as an effective technique for time series forecasting tasks, providing
more reliable and accurate predictions compared to the standard LSTM method.

3.3. Statistical Tests

To ensure the accuracy of the findings, we compared the EMA LSTM strategy to the other techniques
using a two-tailed paired t-test at a 95% confidence level. In every input/output scenario tested, the
EMA LSTM technique was found to have a p-value less than 0.05 and thus to be statistically superior to
all other methods. This further demonstrates the efficacy of the EMA LSTM technique over competing
approaches to multi-step vector output prediction of time series data.

3.4. Discussion

An unexpected finding in this study was the importance of the EMA technique in enhancing the
performance of the LSTM model. These findings are consistent with previous research [25], which has
suggested that incorporating the EMA technique with empirical mode decomposition or the LSTM-
ARIMA algorithm can improve prediction performance in time series data. However, more research is
needed to determine which of these hybrid methods is most effective. A limitation of this study is the
relatively small dataset, which may limit the generalizability of the results.

The main finding of this study is that the EMA LSTM method outperforms other commonly used
deep learning models in multi-step vector output prediction of time series data. These findings are
consistent with previous research suggesting that LSTM models are more accurate than traditional
machine learning models [12], [26]-[28]. This study has important implications for real-world
applications that require accurate multi-step vector output prediction of time series data, such as stock
market forecasting and climate prediction.

The strength of the approach is the use of a novel method, the EMA LSTM, which combines the EMA
technique with the LSTM model to improve the accuracy of multi-step vector output prediction of time
series data. These findings are consistent with previous research [28]-[31], which has suggested that
various methods can be used to improve the accuracy of time series prediction models. However, a
limitation of this study is the relatively small dataset, which may limit the generalizability of the results.
Furthermore, the study only compared the proposed method to other deep learning models and did not
include other traditional machine learning models or statistical models.

4. CONCLUSION

This research concludes that the EMA LSTM method is superior to other widely used deep
learning models when applied to the problem of multi-step vector output prediction of time series data.
The EMA method is incorporated into the LSTM approach used in the EMA LSTM method to decrease
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noise in the data and increase precision. The significance of data preprocessing to boost the efficiency of
deep learning models is also highlighted.

The limitations of the study include the relatively small dataset used, which could limit the
generalizability of the results. Furthermore, the study only compared the proposed method to other
deep learning models and did not include other traditional machine learning models or statistical
models.

In order to further verify the efficacy of the EMA LSTM technique, future study could make use
of larger datasets. Further, the proposed technique could be evaluated in comparison to more
conventional machine learning models or statistical models. In conclusion, the EMA LSTM approach
could be modified to include additional data and domain expertise, thereby enhancing the precision of
time series prediction models in practical settings.
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