Diabetes Risk Prediction Using Extreme Gradient Boosting (XGBoost)
Abstract
Keywords
Full Text:
PDFReferences
V. Vaidya and L. K. Vishwamitra Scholar, “Diabetes Detection using Convolutional Neural Network through Feature Sequencing,” Turkish J. Comput. Math. Educ., vol. 12, no. 10, pp. 2783–2789, 2021.
A. D. Association, “Classification and diagnosis of diabetes,” Diabetes Care, vol. 38 Suppl:S, 2015, doi: 10.2337/dc15-S005.
S. Patel, R. Patel, N. Ganatra, and A. Patel, “Predicting a Risk of Diabetes at Early Stage using Machine Learning Approach,” Turkish J. Comput. Math. Educ., vol. 12, no. 10, pp. 5277–5284, 2021.
D. Elias and T. Maria, “Data-Driven Machine-Learning Methods for Diabetes Risk Prediction,” Sensors, p. 5304, 2022, doi: https://doi.org/10.3390/s22145304.
M. M. F. Islam, R. Ferdousi, S. Rahman, and H. Y. Bushra, “Likelihood Prediction of Diabetes at Early Stage Using Data Mining Techniques,” Comput. Vis. Mach. Intell. Med. Image Anal. Springer, Singapore., pp. 113-125., 2020.
U. e. Laila, K. Mahboob, A. W. Khan, F. Khan, and W. Taekeun, “An Ensemble Approach to Predict Early-Stage Diabetes Risk Using Machine Learning: An Empirical Study,” Sensors, vol. 22, no. 14, pp. 1–15, 2022, doi: 10.3390/s22145247.
T. Dendup, X. Feng, S. Clingan, and T. Astell-Burt, “Environmental risk factors for developing type 2 diabetes mellitus: A systematic review,” Int. J. Environ. Res. Public Health, vol. 15, no. 1, 2018, doi: 10.3390/ijerph15010078.
Y. Tan, H. Chen, J. Zhang, R. Tang, and P. Liu, “Early Risk Prediction of Diabetes Based on GA-Stacking,” Appl. Sci., vol. 12, no. 2, 2022, doi: 10.3390/app12020632.
S. K. Bhoi et al., “Prediction of Diabetes in Females of Pima Indian Heritage: A Complete Supervised Learning Approach,” Turkish J. Comput. Math. Educ., vol. 12, no. 10, pp. 3074–3084, 2021.
V. R. Geetha, N. Jayaveeran, and A. S. A. K. N, “Classification Of Gestational Diabetes Using Modified Fuzzy C Means Clustering And Machine Learning Technique,” vol. 12, no. 10, pp. 2416–2427, 2021.
R. Saxena and S. Kumar Sharma Manali Gupta, “Role of K-nearest neighbour in detection of Diabetes Mellitus,” Turkish J. Comput. Math. Educ., vol. 12, no. 10, pp. 373–376, 2021.
J. J. S. M. Et. al., “Predictive Modeling Framework for Diabetes Classification Using Big Data Tools and Machine Learning,” Turkish J. Comput. Math. Educ., vol. 12, no. 10, pp. 818–823, 2021, doi: 10.17762/turcomat.v12i10.4255.
N. N. Pandika Pinata, I. M. Sukarsa, and N. K. Dwi Rusjayanthi, “Prediksi Kecelakaan Lalu Lintas di Bali dengan XGBoost pada Python,” J. Ilm. Merpati (Menara Penelit. Akad. Teknol. Informasi), vol. 8, no. 3, p. 188, 2020, doi: 10.24843/jim.2020.v08.i03.p04.
H. Mo, H. Sun, J. Liu, and S. Wei, “Developing window behavior models for residential buildings using XGBoost algorithm,” Energy Build., vol. 205, pp. 1–23, 2019, doi: 10.1016/j.enbuild.2019.109564.
A. Mello, “XGBoost: theory and practice,” https://towardsdatascience.com/xgboost-theory-and-practice-fb8912930ad6, 2020.
Article Statistics
Abstract view : 28 timesPDF - 19 times
DOI: https://doi.org/10.15575/join.v7i2.970
Refbacks
- There are currently no refbacks.
JOIN has been indexed by :
© All rights reserved 2016. Jurnal Online Informatika, p-ISSN: 2528-1682 | e-ISSN: 2527-9165

This work is licensed under a Creative Commons Attribution-NoDerivs 2.0 Generic License.