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 Convolutional Neural Network (CNN) is an effective Deep Learning (DL) 

algorithm that solves various image identification problems. The use of CNN 

for time-series data analysis is emerging. CNN learns filters, representations 

of repeated patterns in the series, and uses them to forecast future values. The 

network performance may depend on hyperparameter settings. This study 

optimizes the CNN architecture based on hyperparameter tuning using 

Particle Swarm Optimization (PSO), PSO-CNN. The proposed method was 

evaluated using multivariate time-series data of electronic journal visitor 

datasets. The CNN equation in image and time-series problems is the input 

given to the model for processing numbers. The proposed method generated 

the lowest RMSE (1.386) with 178 neurons in the fully connected and 2 

hidden layers. The experimental results show that the PSO-CNN generates 

an architecture with better performance than ordinary CNN.  
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1. INTRODUCTION 

Hyperparameter tuning arises because the default hyperparameter settings cannot guarantee the 

optimal performance of the model [1]. Hyperparameter tuning aims to find the hyperparameter values to 

produce the best-performing model. Each Machine Learning (ML) model has different hyperparameter settings 

[2]. The hyperparameter tuning settings are also different for each dataset [3]. The tuning is critical for tree-

based ML models and deep neural networks with many hyperparameters [4]. Therefore, choosing the correct 

optimization technique is the key to generating optimal hyperparameter tuning. 

Traditional optimization techniques may not suit hyperparameter tuning problems because of local 

values rather than a global optimal [5]. Gradient descent is a common type of traditional optimization algorithm 

that can tune hyperparameter tuning by calculating its gradient [6]. In addition, Grid Search (GS) [7], [8] and 

Random Search (RS) [9], [10] are traditional methods for hyperparameter tuning. Many other optimization 

approaches, such as metaheuristic algorithms, are more suited to hyperparameter tuning issues than classic 

optimization methods. [11].  A metaheuristic algorithm is a collection of strategies for solving increasingly 

significant and sophisticated search space optimization issues, such as hyperparameter tuning. [12]. 

Among metaheuristic methods, Genetic Algorithm (GA) [13] and Particle Swarm Optimization (PSO) 

[14] are the most popular algorithms for hyperparameter tuning problems. GA detects the combination of 

hyperparameters that perform well in each generation and passes them on to the next generation until the 

combination with the best performance is identified [15]. Each particle communicates with other particles in 

the PSO algorithm to detect and update the global optimal in each iteration until the last optimal value is 

detected [16]. The metaheuristic algorithm can efficiently explore the search space to detect optimal or near-

optimal solutions. PSO is one of the evolutionary algorithms, and it is impossible to get stuck in the local 

optimum compared to other optimization methods. PSO is generally simpler than GA because complicated 

operations like permutations are not required. PSO also provides more consistent performance compared to 

https://doi.org/10.15575/join.v7i2.858
https://issn.brin.go.id/terbit/detail/1466480524
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GA. Therefore, the primary SI metaheuristic method, PSO, is suitable for hyperparameter tuning problems 

with large configuration space because of its high efficiency [17]. Thus, it can be used in Deep Learning (DL) 

which has a large configuration space with several hyperparameters, such as activation type and optimizer. 

CNN is one of the DL algorithms that successfully demonstrated its effectiveness in various image 

problems [18]. The CNN process is broadly divided into feature extraction and fully connected layers. The 

feature extraction layer extracts features in an image in numbers representing the image [19]. In this layer, 

there are two processes, namely convolution and polling. The feature map generated from the feature extraction 

layer is still in the form of a multidimensional array. Flattening or reshaping the feature map into a vector for 

input from the fully connected layer is necessary. The fully connected layer has the same way of working as 

the Artificial Neural Network (ANN) and has the same parts, namely the input layer, hidden layer, activation 

function, and output layer [20]. This layer aims so that the data can be classified. CNN network performance 

depends directly on its hyperparameters. PSO has been tried to optimize the CNN hyperparameters [21]–[24]. 

The results show that PSO can increase the accuracy of CNN by finding a better hyperparameter configuration. 

Most PSO tuning hyperparameters solve image classification problems, and computer vision from all existing 

studies may be used in time-series data analysis. The goal of using CNN on time series data is to learn filters 

that represent repeated patterns in the series and use them to forecast future values. CNN can also automatically 

learn and extract features from raw data without prior knowledge or feature engineering. The method may work 

well on noisy time series by discarding noise at each subsequent layer, constructing a hierarchy of valuable 

features, and extracting only the meaningful features [25].  

Thus, the author optimizes the CNN architecture by utilizing PSO's global and local exploration 

capabilities in this study. This research focuses on using PSO-CNN for hyperparameter tuning in multivariate 

time series analysis. Hyperparameter tuning on the fully connected layer process to get the best minimum error 

with the six hyperparameters generated. The six hyperparameters are the number of hidden layer units 

(neurons), type of activation function, loss function, optimizer, number of epochs, and batch sizes. The 

contribution of this research is the use of PSO as a tuning hyperparameter on CNN. The tuning maintains the 

use of all existing features to achieve the initial goal of multivariate time-series analysis. This research is 

different from other studies, which use various neurons [26], activation function [27], and optimizer [28] to get 

the best forecasting performances. So, the novelty of this research is that hyperparameter tuning with PSO can 

be used to automatically generate efficient architectures without doing too much experimentation on various 

possible configurations of CNN parameters, which can reduce the long experimental and computation time. 

This article consists of 4 structural sections. Section 1 introduces issues that require tuning CNN 

hyperparameters and an overview of similar research. The methods and theories used in this research are 

presented in Section 2. This method is implemented, and the results are analyzed in Section 3. The last section 

describes the conclusions from PSO tuning hyperparameter CNN results. 

 

 

2. METHODS 

This section describes the methods used to evaluate the setting of PSO tuning hyperparameter CNN. 

The process begins with the collection of datasets. The preprocessing process is done by normalizing the data. 

Evaluation is done using RMSE. 

 

2.1. Dataset Collection 

The data used is time-series data on the number of visitors to the knowledge engineering and data 

science (KEDS) journal website from January 1, 2018, to December 31, 2020. KEDS website can be accessed 

at http://journal2.um.ac.id/index.php/keds. The dataset is a multivariate type that contains four attributes: 

sessions, page views, visitors, and new visitors. Sessions is the number of visitors from one IP who access a 

journal portal for the first time in a certain period [29]. Pageviews are the total number of web pages visited. 

Visitors are the total number of website visitors, while new visitors are the ones who visit the website for the 

first time. The dataset visualization can be seen in Figure 1. 

 

https://issn.brin.go.id/terbit/detail/1466480524
https://issn.brin.go.id/terbit/detail/1464049910
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Figure 1. Dataset 

 

In this study, the data used is annual data, resulting in three different dataset models, as shown in 

Table 1.   

Table 1. Dataset Model 

Model Training (Year) Testing (Year) 

1 2018 2019 

2 2019 2020 

3 2018-2019 2020 

 

2.2. Preprocessing 

Preprocessing is done to improve the quality of input data to get results with a high level of 

performance. Preprocessing used is data normalization. Normalization of the data is carried out so that the 

network output follows the activation function used. Data normalization aims to minimize errors by changing 

the actual value to a value with a range of 0 to 1. The data normalization technique used is min-max 

normalization [30]. The min-max normalization equation can be seen in Eq. (1).  

 

𝑋′ = 
(𝑥−𝑚𝑖𝑛𝑥)

(𝑚𝑎𝑥𝑥− 𝑚𝑖𝑛𝑥)
 

 

(1) 

𝑋′ is the result of normalization, 𝑥 is the data to be normalized, 𝑚𝑖𝑛𝑥 and 𝑚𝑎𝑥𝑥  , represent the minimum and 

maximum values of all data. 
  

2.3. Convolutional Neural Network (CNN) 

CNN is included in DL, which is a sub-field of ML by applying the basic concepts of the ANN 

algorithm with more layers [31]. CNN is a feedforward network because the information flow occurs only in 

one direction, namely from input to output. CNN is quite popular and has good performance in various fields 

such as image processing and computer vision [32]. CNN uses a convolution layer that can handle the spatial 

information available in the image. In contrast, fully connected layers have a memory to store information 

available in time-series data [33]. The only difference between computer vision and time-series problems is 

the input given to the model, the image matrix input for computer vision, and the 1D array input for time series 

forecasting [34]. Thus, this principle can be implemented in time-series analysis. The architecture of the 1D 

CNN model is in Figure 2. 
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Figure 2. 1D CNN Layer Structure 

 

To get good results when using the CNN method is not easy because it must require consideration of 

setting various parameters in the process. In CNN, there are several lists of different categories of 

hyperparameters according to the layer. The list of hyperparameters on CNN is in Table 2 [24][35]. 

Table 2. The list of Hyperparameters 

Category Hyperparameter 

Convolutional layer The number of convolutional layers 

The number of filters 

The filter size 

The activation function 

The pooling layer size 

Pooling layer Size of the pooling window 

Type of pooling 

The number of pooling layer 

Stride or step size 

Fully connected layer The number of units or neuron 

The Activation function output 

Loss function 

Type of optimizer 

The number of epochs 

The batch size 

 

2.4. Particle Swarm Optimization (PSO) 

PSO is a general optimization method that belongs to the straightforward metaheuristic. It searches 

for the optimal solution in search space within the swarm [36]. PSO has several advantages: better convergence, 

high efficient computing, and low use of computing resources [37]. PSO runs applying a population of particles 

with their respective velocities and positions. The algorithm will iterate over all the updated particles until it 

reaches the optimal value. Each particle gets a solution from the process individually or globally to update all 

velocities and positions. The update process can be done by calculating of an 𝑖𝑡ℎ particle in (𝑘 + 1)𝑡ℎ for speed 

in Eq. (2) and for position in Eq. (3). 

 𝑣𝑖⃗⃗⃗⃗ (𝑘 + 1) = 𝜔𝑣1(𝑘) + 𝑐1𝑟1(𝑝𝑏𝑒𝑠𝑡1⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗(𝑘) −  𝑥𝑖⃗⃗⃗⃗  (𝑘)) + 𝑐2𝑟2(𝑔𝑏𝑒𝑠𝑡⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗(𝑘) −  𝑥𝑖⃗⃗⃗⃗  (𝑘)) (2) 

 𝑥𝑖⃗⃗⃗⃗  (𝑘 + 1) =  𝑥𝑖⃗⃗⃗⃗ (𝑘) +  𝑣𝑖⃗⃗⃗⃗ (𝑘 + 1)  (3) 

 

The social and cognitive behavior of each particle influences the particle's mobility. The swarm's best 

experience determines social behavior 𝑔𝑏𝑒𝑠𝑡⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ and the particle's own optimal experience in terms of cognitive 

behavior 𝑝𝑏𝑒𝑠𝑡⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗, traveled a long way. Two random variables 𝑟1 and 𝑟2 have values ranging from 0 to 1. The 

parameters inertia weight (𝜔), social coefficient (𝑐1), and cognitive coefficient (𝑐2) are used to manage particle 

behavior and balance exploration and exploitation. 

https://issn.brin.go.id/terbit/detail/1466480524
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2.5. The proposed method: PSO tuning hyperparameter CNN 

This section presents an optimization approach for applying the PSO algorithm to optimize the CNN 

architecture hyperparameters, and this approach is called PSO tuning hyperparameter CNN. The first objective 

is to select the hyperparameters that affect good CNN performance and then implement the PSO algorithm to 

find the optimal parameters. The proposed PSO tuning hyperparameter CNN method can be seen in Figure 3. 

 
Figure 3. Proposed Method PSO tuning hyperparameter CNN 

 

From the list of hyperparameters in Table 2, to solve problems in image classification, the majority of 

hyperparameters in all categories are used. Meanwhile, this research focuses on using PSO for tuning 

hyperparameter CNN in multivariate time-series analysis. Hyperparameter tuning will be carried out only on 

the fully connected layer. The hyperparameter space of the fully connected layer can be seen in Table 3. The 

dropout values used are equal, namely 0.2 [38].  

Table 3. Hyperparameter Space 

Hyperparameter Search Space 

Unit (Neuron) 16 - 256 

Activation function output Linear, ReLU, Tanh 

Loss function MSE, MAE 

Optimizer Adam, RMSprop 

Epoch 5 - 500 

Batch size 16, 32, 64 

 

The selection of each parameter in Table 3 is based on a combination of research by [24], [39]–[42]. 

The first hyperparameter is the number of neurons; choosing the optimal number of neurons for each layer in 

the CNN network is not easy. If the number of neurons is tiny, the CNN will not remember all the information 

needed to make optimal predictions. Conversely, if the number of neurons is very high, the CNN will overfit 
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the training instance and not show appropriate generalizations to estimate the test set accurately. The second is 

the activation function, which is a function used in the neural network to activate or deactivate the neurons in 

the network [43]. Many types of activation functions can be used, and three of them are linear, ReLU and tanh. 

The third is the loss function; in calculating the model error during the optimization process, a loss function 

must be chosen between MSE and MAE [44]. The fourth is the optimizer, an algorithm used to solve 

optimization problems that aim to minimize the objective function, which is intuitively the difference between 

the predicted data and the expected value [45]. There are various optimizers, but the most common and 

frequently used are Adam and RMSprop. Fifth is the number of epoch usage; if the number of training epochs 

is too small, the model will not capture the training instance pattern. However, the model will be overfitted if 

the epoch number is too large. Therefore, finding the appropriate number of epochs is essential in achieving a 

high-performance model [46]. Finally, namely the batch size, network settings with a batch value size that is 

too large or too low can reduce the stochasticity of the cause of gradient descent. It can show a negative effect 

on the results of the forecasting model during the training process [47]. 

 

2.6. Result Evaluation 

The value of the forecasting results will be evaluated using the nominal error value from the root mean 

square error (RMSE). RMSE is a calculation by getting the average value of the sum of the squares of errors. 

RMSE is used to detect irregularities or outliers in the designed prediction system. The equation for calculating 

RMSE can be seen in Eq. (4) [48]. 

𝑅𝑀𝑆𝐸 = √∑
(𝑒𝑡)

2

𝑛

𝑛

𝑡=1
 (4) 

 

𝑅𝑀𝑆𝐸 is the root mean square error value, ∑ is the total number of values, 𝑛 is the number of data, 𝑒𝑡 

is the difference between the actual data and the forecast values. From the calculation of the RMSE value, it 

will be known which model has the best performance in forecasting. The smaller the resulting RMSE value, 

the better the forecasting results, the better the method used [49]. 

 

 

3. RESULTS AND DISCUSSION 

Selection of the exemplary architecture and hyperparameters from the CNN model requires a very 

long process by trial-and-error. Therefore, an automated approach is needed to produce the best CNN 

architectural model with minimal human intervention. The proposed research uses random but integrated PSO 

properties to find the best CNN structure by optimizing hyperparameters on a given data set in a predefined 

search space. The optimization process requires determining the hyperparameter space at the beginning to 

determine the search. This section demonstrates the effectiveness of PSO tuning hyperparameter CNN on three 

types of dataset models. The proposed PSO tuning hyperparameter CNN model was implemented, trained, and 

tested using Google's Collaboratory. 

Using CNN, set the hyperparameter using the default values for each layer category. The 

convolutional layer uses 64 filters with 1 kernel and the ReLU activation function in hidden and output layer. 

In the pooling layer, use 1 size and dropout 0.2. For the fully connected layer, the number of neurons varies 

from 16, 32, 64, 128, and 256, with a dropout of 0.2, batch size 16, and epochs 500. In this study, experiments 

were also carried out by adding hidden layers from 2-10 for ordinary CNN. The results of forecasting RMSE 

using CNN can be seen in Table 4. The best RMSE of 2.314 is obtained in Model 1 using 2 hidden layers and 

64 neurons. 

Table 4. RMSE of CNN 

Hidden 

Layers 

Neuron 

Model 1 Model 2 Model 3 

16 32 64 128 256 16 32 64 128 256 16 32 64 128 256 

2 3.166 2.885 2.314 3.233 2.586 3.354 3.631 3.605 3.302 3.186 2.934 3.140 3.079 2.747 2.331 

3 4.060 3.144 3.580 2.940 2.688 3.789 4.044 3.578 3.473 3.449 3.669 3.576 3.251 3.317 3.225 

4 5.056 4.387 3.005 3.633 3.882 5.297 5.187 4.747 4.261 4.582 5.188 3.986 4.165 5.341 3.954 

5 5.346 4.456 4.424 3.412 6.908 5.112 5.010 4.482 4.122 4.897 5.573 4.843 4.738 3.864 3.990 

6 6.317 5.355 6.019 4.894 7.548 5.539 5.615 5.293 5.634 5.319 6.689 5.553 5.692 5.610 5.767 

7 6.936 7.044 5.054 6.110 9.697 6.585 6.384 5.931 5.542 5.640 7.304 6.524 5.700 6.761 8.813 

8 6.993 6.901 5.882 7.634 9.038 7.372 7.022 6.129 7.530 8.217 7.376 7.483 7.053 8.596 9.311 

9 7.977 6.905 7.187 9.244 9.549 7.833 8.146 7.938 8.981 9.279 7.239 6.225 6.888 8.161 9.475 

10 8.304 7.330 7.783 8.557 9.779 9.010 8.075 8.556 8.905 9.272 7.988 7.469 8.396 8.872 9.435 
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The results of hyperparameter tuning on different datasets also have different values. So, in this 

research, there will be three kinds of results from the hyperparameter search process of PSO tuning 

hyperparameter CNN according to the dataset model described in Table 1. The PSO tuning hyperparameter 

CNN hyperparameter search results for each model can be seen in Table 5. 

Table 5. PSO Hyperparameter Search Result CNN 

Hyperparameters Model 1 Model 2 Model 3 

Unit (Neuron) 28 131 178 

Activation function ouput ReLU Tanh Tanh 

Loss function MAE MSE MSE 

Optimizer RMSprop RMSprop Adam 

Epoch 52 69 60 

Batch size 16 16 32 

From Table 5, it can be seen that the value of the hyperparameter search results in each model is 

different because the tuning process also pays attention to the contents of the dataset. The use of the number 

of neurons in each model in the ordinary CNN experiment has five scenarios, while in the PSO tuning 

hyperparameter CNN, the number of neurons in each model follows the results of the hyperparameter tuning. 

Using the number of neurons respectively for Models 1 to 3 were 28, 131, and 178. After all the hyperparameter 

tuning results in Table 5 are implemented, the new RMSE for each model can be seen in Table 6.  

Table 6. RMSE of PSO tuning hyperparameter CNN 

Hidden Layers Model 1 Model 2 Model 3 

2 1.840 1.912 1.386 

3 2.498 2.406 1.880 

4 3.346 2.204 2.236 

5 4.320 2.090 1.998 

6 5.500 2.650 2.734 

7 6.060 2.628 3.310 

8 6.098 2.240 2.954 

9 6.602 2.682 3.602 

10 6.568 2.612 3.342 

 

Based on Table 6, it can be noticed that the results of Model 1 after tuning obtained a better RMSE 

value of 1.840 when using 2 hidden layers with 28 neuron units. The number of hidden layers in Model 1 also 

makes the resulting RMSE value more significant. When using 10 hidden layers on an ordinary CNN, it 

produces a value of RMSE that ranges from 7.330 – 9.779, while after tuning with PSO tuning hyperparameter 

CNN, it produces an RMSE which is a better value is 6.568. Likewise, with the other two models. RMSE in 

Model 2 shows that PSO tuning hyperparameter CNN results have minor RMSE results compared to ordinary 

CNN. The best RMSE in Model 2 is acquired using 2 hidden layers with 131 neurons, 1.912. Model 3 also has 

the best RMSE value resulting from the PSO tuning hyperparameter CNN process of 1.386 compared to the 

ordinary CNN when using 2 hidden layers with 78 neurons. The RMSE results are also the best among the 

PSO tuning hyperparameter CNN models. 

The overall RMSE PSO tuning hyperparameter CNN results in all models in Table 6 have a better 

value when compared to ordinary CNN in Table 4, happens because PSO can automatically search for the best 

hyperparameter space to experiments that perform trial and error of CNN architecture. In addition, the use of 

2 hidden layers in this study resulted in the best RMSE value among the addition of other hidden layers, both 

on ordinary CNN and PSO tuning hyperparameter CNN. A paired t-test was used to examine the influence of 

changes in the number of hidden layers on the RMSE value obtained by the PSO tuning hyperparameter CNN 

method. Table 7 displays the significance test results. 

Table 7. Result of Paired T-test 

Model 2-tailed P value 

1 0.0094 

2 0.0028 

3 0.0011 

From the significance test results in Table 7, it is known that the PSO tuning hyperparameter CNN results 

in all models produce a significance 2-tailed P value of < 0.05. This shows a significant effect on the difference 

in the use of the number of hidden layers on the resulting RMSE value. From the overall results, the PSO tuning 
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hyperparameter CNN can improve the RMSE results and have a significant result for increasing the number of 

hidden layers. 

4. CONCLUSION 

This study optimizes CNN hyperparameters using the PSO method. The PSO algorithm generates the 

right hyperparameter to reduce the error value (RMSE) by comparing the ordinary CNN model with a higher 

RMSE value than the proposed PSO tuning hyperparameter CNN method. In addition, based on the results of 

the significance test, it is also known that there is a significant effect on increasing the number of hidden layers 

in the RMSE PSO tuning hyperparameter CNN results, which shows that tuning the PSO algorithm can produce 

an optimal architecture with better multivariate forecasting values. In future studies, a comparison of 

optimization using the Gray Wolf Optimizer (GWO) and transfer learning techniques will be carried out. 
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