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Convolutional Neural Network (CNN) is an effective Deep Learning (DL)
algorithm that solves various image identification problems. The use of CNN
for time-series data analysis is emerging. CNN learns filters, representations
of repeated patterns in the series, and uses them to forecast future values. The
network performance may depend on hyperparameter settings. This study
optimizes the CNN architecture based on hyperparameter tuning using
Particle Swarm Optimization (PSO), PSO-CNN. The proposed method was
evaluated using multivariate time-series data of electronic journal visitor
datasets. The CNN equation in image and time-series problems is the input
given to the model for processing numbers. The proposed method generated
the lowest RMSE (1.386) with 178 neurons in the fully connected and 2
hidden layers. The experimental results show that the PSO-CNN generates

Multivariate time-series
PSO

an architecture with better performance than ordinary CNN.
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1. INTRODUCTION

Hyperparameter tuning arises because the default hyperparameter settings cannot guarantee the
optimal performance of the model [1]. Hyperparameter tuning aims to find the hyperparameter values to
produce the best-performing model. Each Machine Learning (ML) model has different hyperparameter settings
[2]. The hyperparameter tuning settings are also different for each dataset [3]. The tuning is critical for tree-
based ML models and deep neural networks with many hyperparameters [4]. Therefore, choosing the correct
optimization technique is the key to generating optimal hyperparameter tuning.

Traditional optimization techniques may not suit hyperparameter tuning problems because of local
values rather than a global optimal [5]. Gradient descent is a common type of traditional optimization algorithm
that can tune hyperparameter tuning by calculating its gradient [6]. In addition, Grid Search (GS) [7], [8] and
Random Search (RS) [9], [10] are traditional methods for hyperparameter tuning. Many other optimization
approaches, such as metaheuristic algorithms, are more suited to hyperparameter tuning issues than classic
optimization methods. [11]. A metaheuristic algorithm is a collection of strategies for solving increasingly
significant and sophisticated search space optimization issues, such as hyperparameter tuning. [12].

Among metaheuristic methods, Genetic Algorithm (GA) [13] and Particle Swarm Optimization (PSO)
[14] are the most popular algorithms for hyperparameter tuning problems. GA detects the combination of
hyperparameters that perform well in each generation and passes them on to the next generation until the
combination with the best performance is identified [15]. Each particle communicates with other particles in
the PSO algorithm to detect and update the global optimal in each iteration until the last optimal value is
detected [16]. The metaheuristic algorithm can efficiently explore the search space to detect optimal or near-
optimal solutions. PSO is one of the evolutionary algorithms, and it is impossible to get stuck in the local
optimum compared to other optimization methods. PSO is generally simpler than GA because complicated
operations like permutations are not required. PSO also provides more consistent performance compared to
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GA. Therefore, the primary SI metaheuristic method, PSO, is suitable for hyperparameter tuning problems
with large configuration space because of its high efficiency [17]. Thus, it can be used in Deep Learning (DL)
which has a large configuration space with several hyperparameters, such as activation type and optimizer.

CNN is one of the DL algorithms that successfully demonstrated its effectiveness in various image
problems [18]. The CNN process is broadly divided into feature extraction and fully connected layers. The
feature extraction layer extracts features in an image in numbers representing the image [19]. In this layer,
there are two processes, namely convolution and polling. The feature map generated from the feature extraction
layer is still in the form of a multidimensional array. Flattening or reshaping the feature map into a vector for
input from the fully connected layer is necessary. The fully connected layer has the same way of working as
the Artificial Neural Network (ANN) and has the same parts, namely the input layer, hidden layer, activation
function, and output layer [20]. This layer aims so that the data can be classified. CNN network performance
depends directly on its hyperparameters. PSO has been tried to optimize the CNN hyperparameters [21]-[24].
The results show that PSO can increase the accuracy of CNN by finding a better hyperparameter configuration.
Most PSO tuning hyperparameters solve image classification problems, and computer vision from all existing
studies may be used in time-series data analysis. The goal of using CNN on time series data is to learn filters
that represent repeated patterns in the series and use them to forecast future values. CNN can also automatically
learn and extract features from raw data without prior knowledge or feature engineering. The method may work
well on noisy time series by discarding noise at each subsequent layer, constructing a hierarchy of valuable
features, and extracting only the meaningful features [25].

Thus, the author optimizes the CNN architecture by utilizing PSO's global and local exploration
capabilities in this study. This research focuses on using PSO-CNN for hyperparameter tuning in multivariate
time series analysis. Hyperparameter tuning on the fully connected layer process to get the best minimum error
with the six hyperparameters generated. The six hyperparameters are the number of hidden layer units
(neurons), type of activation function, loss function, optimizer, number of epochs, and batch sizes. The
contribution of this research is the use of PSO as a tuning hyperparameter on CNN. The tuning maintains the
use of all existing features to achieve the initial goal of multivariate time-series analysis. This research is
different from other studies, which use various neurons [26], activation function [27], and optimizer [28] to get
the best forecasting performances. So, the novelty of this research is that hyperparameter tuning with PSO can
be used to automatically generate efficient architectures without doing too much experimentation on various
possible configurations of CNN parameters, which can reduce the long experimental and computation time.

This article consists of 4 structural sections. Section 1 introduces issues that require tuning CNN
hyperparameters and an overview of similar research. The methods and theories used in this research are
presented in Section 2. This method is implemented, and the results are analyzed in Section 3. The last section
describes the conclusions from PSO tuning hyperparameter CNN results.

2. METHODS

This section describes the methods used to evaluate the setting of PSO tuning hyperparameter CNN.
The process begins with the collection of datasets. The preprocessing process is done by normalizing the data.
Evaluation is done using RMSE.

2.1. Dataset Collection

The data used is time-series data on the number of visitors to the knowledge engineering and data
science (KEDS) journal website from January 1, 2018, to December 31, 2020. KEDS website can be accessed
at http://journal2.um.ac.id/index.php/keds. The dataset is a multivariate type that contains four attributes:
sessions, page views, visitors, and new visitors. Sessions is the number of visitors from one IP who access a
journal portal for the first time in a certain period [29]. Pageviews are the total number of web pages visited.
Visitors are the total number of website visitors, while new visitors are the ones who visit the website for the
first time. The dataset visualization can be seen in Figure 1.
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Figure 1. Dataset
In this study, the data used is annual data, resulting in three different dataset models, as shown in
Table 1.

Table 1. Dataset Model
Model Training (Year) Testing (Year)

1 2018 2019
2 2019 2020
3 2018-2019 2020

2.2. Preprocessing

Preprocessing is done to improve the quality of input data to get results with a high level of
performance. Preprocessing used is data normalization. Normalization of the data is carried out so that the
network output follows the activation function used. Data normalization aims to minimize errors by changing
the actual value to a value with a range of 0 to 1. The data normalization technique used is min-max
normalization [30]. The min-max normalization equation can be seen in Eq. (1).

¥ = (x—miny) 1)
(maxx— minx)

X' is the result of normalization, x is the data to be normalized, min, and max, , represent the minimum and

maximum values of all data.

2.3. Convolutional Neural Network (CNN)

CNN is included in DL, which is a sub-field of ML by applying the basic concepts of the ANN
algorithm with more layers [31]. CNN is a feedforward network because the information flow occurs only in
one direction, namely from input to output. CNN is quite popular and has good performance in various fields
such as image processing and computer vision [32]. CNN uses a convolution layer that can handle the spatial
information available in the image. In contrast, fully connected layers have a memory to store information
available in time-series data [33]. The only difference between computer vision and time-series problems is
the input given to the model, the image matrix input for computer vision, and the 1D array input for time series
forecasting [34]. Thus, this principle can be implemented in time-series analysis. The architecture of the 1D
CNN model is in Figure 2.
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Figure 2. 1D CNN Layer Structure

To get good results when using the CNN method is not easy because it must require consideration of
setting various parameters in the process. In CNN, there are several lists of different categories of
hyperparameters according to the layer. The list of hyperparameters on CNN is in Table 2 [24][35].

Table 2. The list of Hyperparameters
Category Hyperparameter
Convolutional layer ~ The number of convolutional layers
The number of filters
The filter size
The activation function
The pooling layer size
Pooling layer Size of the pooling window
Type of pooling
The number of pooling layer
Stride or step size
Fully connected layer  The number of units or neuron
The Activation function output
Loss function
Type of optimizer
The number of epochs
The batch size

2.4, Particle Swarm Optimization (PSO)

PSO is a general optimization method that belongs to the straightforward metaheuristic. It searches
for the optimal solution in search space within the swarm [36]. PSO has several advantages: better convergence,
high efficient computing, and low use of computing resources [37]. PSO runs applying a population of particles
with their respective velocities and positions. The algorithm will iterate over all the updated particles until it
reaches the optimal value. Each particle gets a solution from the process individually or globally to update all
velocities and positions. The update process can be done by calculating of an it* particle in (k + 1)*" for speed
in Eqg. (2) and for position in Eg. (3).

Yk + 1) = wvy (k) + ciry (pbesty (k) — x; (k) + c;ma(gbest (k) —x; (k) @
X% (k+1) =%k +v(k+1) ®

The social and cognitive behavior of each particle influences the particle's mobility. The swarm's best
experience determines social behavior gbest and the particle's own optimal experience in terms of cognitive

behavior pbest, traveled a long way. Two random variables r; and r, have values ranging from 0 to 1. The
parameters inertia weight (w), social coefficient (c,), and cognitive coefficient (c,) are used to manage particle
behavior and balance exploration and exploitation.
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2.5. The proposed method: PSO tuning hyperparameter CNN

This section presents an optimization approach for applying the PSO algorithm to optimize the CNN
architecture hyperparameters, and this approach is called PSO tuning hyperparameter CNN. The first objective
is to select the hyperparameters that affect good CNN performance and then implement the PSO algorithm to
find the optimal parameters. The proposed PSO tuning hyperparameter CNN method can be seen in Figure 3.

Dataset Nor
v v
Training Testing
L———— |Initialize the population
— Calculate the fitness value
Update particle position
Update particle speed
L _No Termination
conditions
Yes l
Unit Activation Loss o 2
Epoch Batch
(Neuron) function function S poc 2 cnate
Lipl Convolutional Neural Network (CNN)
PSO tuning hyperparameter CNN -«

Result Evaluation

Figure 3. Proposed Method PSO tuning hyperparameter CNN

From the list of hyperparameters in Table 2, to solve problems in image classification, the majority of
hyperparameters in all categories are used. Meanwhile, this research focuses on using PSO for tuning
hyperparameter CNN in multivariate time-series analysis. Hyperparameter tuning will be carried out only on
the fully connected layer. The hyperparameter space of the fully connected layer can be seen in Table 3. The
dropout values used are equal, namely 0.2 [38].

Table 3. Hyperparameter Space

Hyperparameter Search Space
Unit (Neuron) 16 - 256
Activation function output  Linear, ReLU, Tanh
Loss function MSE, MAE
Optimizer Adam, RMSprop
Epoch 5-500
Batch size 16, 32, 64

The selection of each parameter in Table 3 is based on a combination of research by [24], [39]-[42].
The first hyperparameter is the number of neurons; choosing the optimal number of neurons for each layer in
the CNN network is not easy. If the number of neurons is tiny, the CNN will not remember all the information
needed to make optimal predictions. Conversely, if the number of neurons is very high, the CNN will overfit
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the training instance and not show appropriate generalizations to estimate the test set accurately. The second is
the activation function, which is a function used in the neural network to activate or deactivate the neurons in
the network [43]. Many types of activation functions can be used, and three of them are linear, ReL U and tanh.
The third is the loss function; in calculating the model error during the optimization process, a loss function
must be chosen between MSE and MAE [44]. The fourth is the optimizer, an algorithm used to solve
optimization problems that aim to minimize the objective function, which is intuitively the difference between
the predicted data and the expected value [45]. There are various optimizers, but the most common and
frequently used are Adam and RMSprop. Fifth is the number of epoch usage; if the number of training epochs
is too small, the model will not capture the training instance pattern. However, the model will be overfitted if
the epoch number is too large. Therefore, finding the appropriate number of epochs is essential in achieving a
high-performance model [46]. Finally, namely the batch size, network settings with a batch value size that is
too large or too low can reduce the stochasticity of the cause of gradient descent. It can show a negative effect
on the results of the forecasting model during the training process [47].

2.6. Result Evaluation

The value of the forecasting results will be evaluated using the nominal error value from the root mean
square error (RMSE). RMSE is a calculation by getting the average value of the sum of the squares of errors.
RMSE is used to detect irregularities or outliers in the designed prediction system. The equation for calculating
RMSE can be seen in Eq. (4) [48].

RMSE = 4

RMSE is the root mean square error value, ' is the total number of values, n is the number of data, e,
is the difference between the actual data and the forecast values. From the calculation of the RMSE value, it
will be known which model has the best performance in forecasting. The smaller the resulting RMSE value,
the better the forecasting results, the better the method used [49].

3. RESULTS AND DISCUSSION

Selection of the exemplary architecture and hyperparameters from the CNN model requires a very
long process by trial-and-error. Therefore, an automated approach is needed to produce the best CNN
architectural model with minimal human intervention. The proposed research uses random but integrated PSO
properties to find the best CNN structure by optimizing hyperparameters on a given data set in a predefined
search space. The optimization process requires determining the hyperparameter space at the beginning to
determine the search. This section demonstrates the effectiveness of PSO tuning hyperparameter CNN on three
types of dataset models. The proposed PSO tuning hyperparameter CNN model was implemented, trained, and
tested using Google's Collaboratory.

Using CNN, set the hyperparameter using the default values for each layer category. The
convolutional layer uses 64 filters with 1 kernel and the ReL U activation function in hidden and output layer.
In the pooling layer, use 1 size and dropout 0.2. For the fully connected layer, the number of neurons varies
from 16, 32, 64, 128, and 256, with a dropout of 0.2, batch size 16, and epochs 500. In this study, experiments
were also carried out by adding hidden layers from 2-10 for ordinary CNN. The results of forecasting RMSE
using CNN can be seen in Table 4. The best RMSE of 2.314 is obtained in Model 1 using 2 hidden layers and
64 neurons.

Table 4. RMSE of CNN

Hidd Neuron
L;yei'; Model 1 Model 2 Model 3
16 32 64 128 256 16 32 64 128 256 16 32 64 128 256
2 3.166 2885 2314 3233 258 3354 3631 3.605 3302 3186 2934 3.140 3.079 2747 2331
3 4060 3.144 3580 2940 2688 3.789 4.044 3578 3473 3449 3669 3576 3251 3317 3.225
4 5056 4.387 3.005 3.633 3882 5297 5187 4747 4261 4582 5188 3986 4.165 5341 3.954
5 5346 4456 4424 3412 6908 5112 5010 4482 4122 4897 5573 4843 4738 3.864 3.990
6 6.317 5355 6.019 4894 7548 5539 5615 5293 5634 5319 6.689 5553 5692 5610 5767
7 6936 7.044 5054 6110 9697 6585 6.384 5931 5542 5640 7.304 6524 5700 6761 8.813
8 6.993 6.901 5882 7.634 9038 7372 7022 6129 7530 8217 7376 7483 7.053 8596 9.311
9 7977 6.905 7.187 9244 9549 7833 8146 7938 8981 9.279 7.239 6.225 6.888 8.161 9.475
10 8304 7330 7.783 8557 9779 9.010 8075 8556 8905 9272 7.988 7.469 8396 8.872 9.435
L]
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The results of hyperparameter tuning on different datasets also have different values. So, in this
research, there will be three kinds of results from the hyperparameter search process of PSO tuning
hyperparameter CNN according to the dataset model described in Table 1. The PSO tuning hyperparameter
CNN hyperparameter search results for each model can be seen in Table 5.

Table 5. PSO Hyperparameter Search Result CNN

Hyperparameters Model1  Model2  Model 3
Unit (Neuron) 28 131 178
Activation function ouput ReLU Tanh Tanh
Loss function MAE MSE MSE
Optimizer RMSprop RMSprop  Adam
Epoch 52 69 60
Batch size 16 16 32

From Table 5, it can be seen that the value of the hyperparameter search results in each model is
different because the tuning process also pays attention to the contents of the dataset. The use of the number
of neurons in each model in the ordinary CNN experiment has five scenarios, while in the PSO tuning
hyperparameter CNN, the number of neurons in each model follows the results of the hyperparameter tuning.
Using the number of neurons respectively for Models 1 to 3 were 28, 131, and 178. After all the hyperparameter
tuning results in Table 5 are implemented, the new RMSE for each model can be seen in Table 6.

Table 6. RMSE of PSO tuning hyperparameter CNN
Hidden Layers Model1l Model2 Model 3
1.840 1.912 1.386
2.498 2.406 1.880
3.346 2.204 2.236
4.320 2.090 1.998
5.500 2.650 2.734
6.060 2.628 3.310
6.098 2.240 2.954
6.602 2.682 3.602
6.568 2.612 3.342

Boow~vouorwn

Based on Table 6, it can be noticed that the results of Model 1 after tuning obtained a better RMSE
value of 1.840 when using 2 hidden layers with 28 neuron units. The number of hidden layers in Model 1 also
makes the resulting RMSE value more significant. When using 10 hidden layers on an ordinary CNN, it
produces a value of RMSE that ranges from 7.330 — 9.779, while after tuning with PSO tuning hyperparameter
CNN, it produces an RMSE which is a better value is 6.568. Likewise, with the other two models. RMSE in
Model 2 shows that PSO tuning hyperparameter CNN results have minor RMSE results compared to ordinary
CNN. The best RMSE in Model 2 is acquired using 2 hidden layers with 131 neurons, 1.912. Model 3 also has
the best RMSE value resulting from the PSO tuning hyperparameter CNN process of 1.386 compared to the
ordinary CNN when using 2 hidden layers with 78 neurons. The RMSE results are also the best among the
PSO tuning hyperparameter CNN models.

The overall RMSE PSO tuning hyperparameter CNN results in all models in Table 6 have a better
value when compared to ordinary CNN in Table 4, happens because PSO can automatically search for the best
hyperparameter space to experiments that perform trial and error of CNN architecture. In addition, the use of
2 hidden layers in this study resulted in the best RMSE value among the addition of other hidden layers, both
on ordinary CNN and PSO tuning hyperparameter CNN. A paired t-test was used to examine the influence of
changes in the number of hidden layers on the RMSE value obtained by the PSO tuning hyperparameter CNN
method. Table 7 displays the significance test results.

Table 7. Result of Paired T-test
Model 2-tailed P value

1 0.0094
2 0.0028
3 0.0011

From the significance test results in Table 7, it is known that the PSO tuning hyperparameter CNN results
in all models produce a significance 2-tailed P value of < 0.05. This shows a significant effect on the difference
in the use of the number of hidden layers on the resulting RMSE value. From the overall results, the PSO tuning
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hyperparameter CNN can improve the RMSE results and have a significant result for increasing the number of
hidden layers.
4. CONCLUSION

This study optimizes CNN hyperparameters using the PSO method. The PSO algorithm generates the
right hyperparameter to reduce the error value (RMSE) by comparing the ordinary CNN model with a higher
RMSE value than the proposed PSO tuning hyperparameter CNN method. In addition, based on the results of
the significance test, it is also known that there is a significant effect on increasing the number of hidden layers
in the RMSE PSO tuning hyperparameter CNN results, which shows that tuning the PSO algorithm can produce
an optimal architecture with better multivariate forecasting values. In future studies, a comparison of
optimization using the Gray Wolf Optimizer (GWO) and transfer learning techniques will be carried out.
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