

Model TangselPay Receipts Using the UTAUT 2 Method

Aolia Ikhwanudin¹, Kusrini Kusrini², Agung Budi Prasetyo³

^{1,2,3}Magister Teknik Informatika, Universitas AMIKOM Yogyakarta, Indonesia

Article Info

Article history:

Received August 17, 2021

Revised October 14, 2021

Accepted October 25, 2021

Published December 26, 2021

Keywords:

PLS-SEM

TangselPay

UTAUT 2

ABSTRACT

The South Tangerang City Government launched a digital financial service called TangselPay. This payment instrument will function as a means of paying levies and other transactions paid by taxpayers, TangselPay is basically a service from the South Tangerang City Government which is accessed via cellular phones (cell phones/smartphones) with the main aim of providing convenience to taxpayers in making levy payments. . . , so that taxpayers do not need to pay cash to the officer. This study aims to determine what factors influence people's interest in using TangselPay services in South Tangerang. The research model used is a modified model of Unified Theory of Acceptance and Use of Technology 2 (UTAUT 2). Data collection using purposive sampling method with the number of respondents in this study as many as 116 people in our market Pamulang. The data analysis technique in this study used Structural Equation Modeling (SEM) with SmartPLS version 3.3.3 software. The results of the analysis illustrate that the variables of Performance Expectations (PE) and Facilitation Condition (FC) have a positive effect on Use behavior and interest in use have a positive effect on usage behavior. While the variables of business expectations, social influence and hedonic motivation do not have a direct effect.

Corresponding Author:

Aolia Ikhwanudin,

Department of Informatics,

Universitas Amikom Yogyakarta,

Jl. Ring Road Utara, Ngringin, Condongcatur, Kec. Depok, Kabupaten Sleman,

Daerah Istimewa Yogyakarta 55281

Email: aolia.1206@students.amikom.ac.id

1. INTRODUCTION

Non-cash payment is a safe and practical payment method in making payments. This payment process does not use physical money and is the gateway to technological advances in the world economy [1]. This non-cash payment method will eliminate the use of cash as a medium of exchange for goods and services by enabling electronic transfer payments or non-electronic payments by check [2]. The Cashless Society will solve problems related to cash requests and can be used instead of cash as legal tender.

South Tangerang City is a city whose economic structure is dominated by trade and services. The demand for service improvement in terms of paying taxes and levies is something that the South Tangerang City Government must realize. This can be realized in the form of easy payment of taxes and levies that can be done anywhere and anytime. One of the innovations made in providing public services is by presenting a payment application called TangselPay [4]. This is done to make it easier for people to make payments through the online system so that they feel satisfied in using the system. The implementation of TangselPay itself began in 2019 during the trial period carried out in our pamulang market. With the existence of TangselPay, it is hoped that it can prevent leakage of South Tangerang City Original Revenue (PAD) and prevent extortion that was previously done manually.

This research was conducted to find out and understand the factors that influence interest in using and behavior using TangselPay in South Tangerang City. To find out the factors that encourage someone to use a system, there are several methods, one of which is the Unified Theory of Acceptance and Use of Technology (UTAUT) model. UTAUT is a model to explain user behavior towards information technology (Handayani and Sudiana, 2015). This model is a combination of eight models that have been successfully developed previously, including theory reasoned action (TRA) by (Fishbein and Azjen in Jati, 2012), technology acceptance model (TAM) by (Davis, in Jati, 2012), motivational model . model (MM) by (Davis, et al., in Jati,

2012), the theory of planned behavior (TPB) by (Azjen in Jati, 2012), a combination of tam and tpb (C-TAM-TPB), by (Talyor and Todd in Jati, 2012), computer utilization model (MPCU), by (Thompson, et al., in Jati, 2012), innovation diffusion theory (IDT) by (Rogers in Jati, 2012), and social cognitive theory (SCT).), by (Bandura, in Jati, 2012).

The rapid development of technology is one of the reasons for the need for a new development of the UTAUT model and the result of the development of this UTAUT model is called the UTAUT2 model. UTAUT 2 is a new technology acceptance model developed by Venkatesh et al[5]. In this study there are variables that measure Behavioral Intention (BI) and use behavior (UB) and are directly influenced by seven main constructs, namely Performance Expectations (PE), Effort Expectations (EE), Social Factors (SI), and Facilitation Condition (FC), Hedonic Motivation (HM), Habit (Hb).

2. METHOD

This research is a quantitative research with a survey method using a questionnaire. The survey was conducted on Pasar Kita Pamulang traders as levy tax payers distributed online. Which consists of 116 traders (Department of Trade and Industry of South Tangerang City). The results of data collection using a questionnaire in the form of numbers, analyzed with SmartPLS 3.3 software. In this study adopted the UTAUT 2 model.

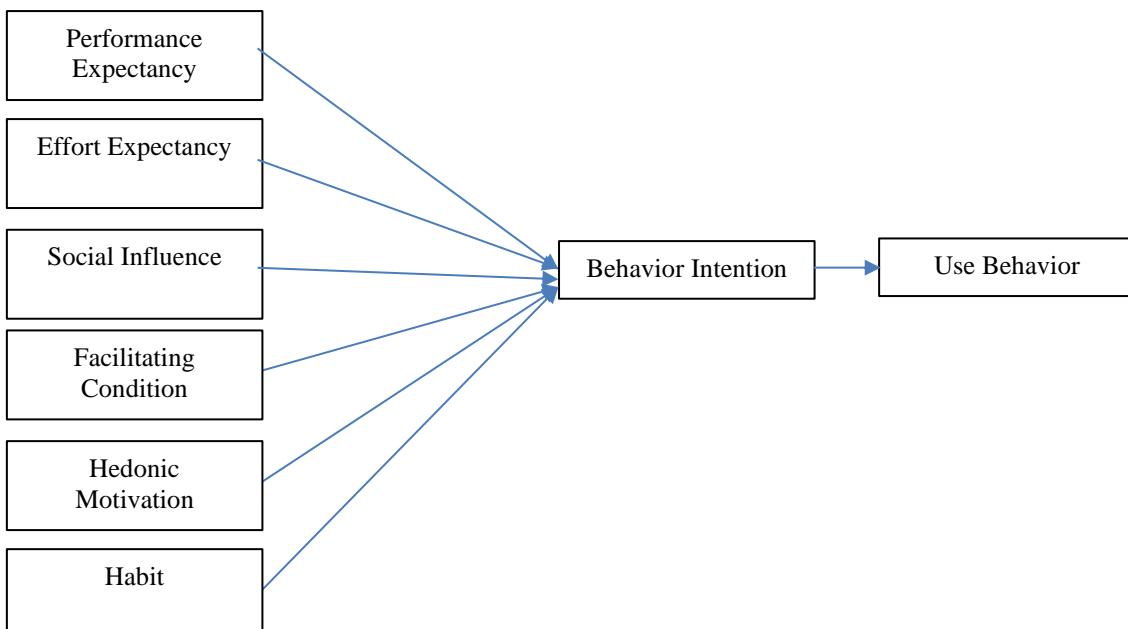


Figure 1. Research Model

2.1 Research Hypothesis

Table 1. Hypothesis

HYPOTHESIS

H1	Performance expectations (PE) have a positive and significant effect on behavioral intentions (BI) using TangselPay.
H2	Expected effort (EE) has a positive effect on behavioral intentions (BI) to use TangselPay.
H3	Social influence (SI) has a positive effect on behavioral intentions (BI) to use TangselPay.
H4	Facilitating conditions (FC) have a positive effect on behavioral intentions (BI) to use TangselPay.
H5	Hedonic motivation (HM) has a positive effect on behavioral intentions (BI) using TangselPay.
H6	Habit (Hb) has a positive effect on behavioral intention(BI) to use TangselPay
H7	Behavioral intention (BI) has a positive effect on behavior using (UB) TangselPay.

2.2 Research Instruments

The research instrument is a questionnaire while the questionnaire used in this study is a closed questionnaire, where the answers are limited or predetermined [7]. The questionnaire is divided into two parts[10]. The first part contains screening questions to ensure that respondents use TangselPay. The second part contains statement items that provide information about the variables studied, this section has 28 questions based on the adoption of the UTAUT model 2. The questions are adjusted to the variables contained in the

UTAUT model 2. This questionnaire uses a Likert point scale, the answers are used as an indicator of the score in the questionnaire. Each question in the questionnaire has a score of 1 to 5

The advantage of a questionnaire instrument that uses a Likert scale with five scales is that the questionnaire is able to accommodate the answers of respondents who are neutral or in doubt [20]. This was not found on the Likert scale with four scales where neutral or doubtful answers were omitted in the questionnaire. In addition, according to Hair (2007), the reason for using a 5-point Likert scale is because a 7-point or 13-point Likert scale will make it difficult for respondents to distinguish each point on the scale and respondents find it difficult. . difficult to process information.

Table 2. Scale Likert

No.	Answer	Score
1	strongly disagree	1
2	Do not agree	2
3	doubt	3
4	agree	4
5	strongly agree	5

To test and ensure the validity and reliability of this research instrument, the researchers adopted and used several indicator items as follows:

Table 3. Research indicators

Variable	Code	Indicator
Performance Expectancy (PE)	PE1	The TangselPay application is very useful for my daily activities in carrying out various kinds of transactions
	PE2	TangselPay application improves my performance efficiency
	PE3	TangselPay application helps solve my payment problems faster
	PE4	TangselPay app increases my productivity
Effort Expectancy (EE)	EE1	TangselPay application is easy to learn and understand
	EE2	TangselPay application is difficult to use
	EE3	It's easy for me to be proficient in using the TangselPay application
Social Influence (SI)	SI1	South Tangerang City Government requires all merchants to use TangselPay
	SI2	South Tangerang City Government advised me to use TangselPay
	SI3	Merchants remind me to use TangselPay
	SI4	I use TangselPay because I know other merchants use it too
Facilitating Conditions (FC)	FC1	I have the necessary resources (internet connection and smartphone) to use the TangselPay app
	FC2	I have sufficient knowledge to use TangselPay application
	FC3	I got the TangselPay usage guide
	FC4	I can get help from other people (City Government, family and relatives) when I have trouble using TangselPay.
Hedonic Motivation	HM1	I feel happy when I use TangselPay Application
	HM2	I feel uncomfortable when using the TangselPay Application
Habit	HM3	I feel happy using TangselPay Application
	HT1	I'm used to using the TangselPay Application
	HT2	I feel I have to continue using the TangselPay App
Behavioral Intention	HT3	If I want to make a transaction, then I will use the TangselPay application
	BI1	I want to continue using the TangselPay app

	BI2	People around me are not satisfied using the TangselPay application
	BI3	I feel the TangselPay application is running well
Use Behavior	UB1	I often use TangselPay
	UB2	I prefer to use TangselPay instead of having to pay directly
	UB3	I use TangselPay for the duration as needed

2.3 Data Analysis Method

The data analysis method uses the Partial Least Squares-Structural Equation Modeling (PLS-SEM) approach using SmartPLS 3.3.3 software which consists of Data Quality Test, Measurement Model (Outer Model), Validity Test, Reliability Test, Structural Model (Inner Model), Test R-Square (R²), T-Statistic Test, and Path Coefficient. Data analysis carried out includes accuracy and accuracy test, similarity test of results, analysis of Original Sample Estimate value and analysis of T statistic value. The software used to perform data analysis is SmartPLS 3.3.3

a. Measurement Model (Outer Model)

- 1) Validity test is a test conducted to determine the suitability of the questionnaire. The result of the calculation of the SmartPLS 3.3 software which is used as the basis for the validity test is the Factor Loading value. The Factor Loading value must show a number more than 0.7 so that the questionnaire is declared valid [8]. Variable indicators that are declared invalid are then deleted and retested.
- 2) Reliability test is a test conducted to determine the level of consistency of research variables. The reliability test is determined from the Composite Reliability value in the SmartPLS 3.3.3 software. The Composite Reliability value must have a value of more than 0.6 so that the questionnaire passes the reliability test

b. Structural Model (Inner Model)

- 1) R-Square Test R Square value shows the magnitude of the influence of the independent variable on the dependent variable. The R Square value is divided into three categories, namely strong (having a value of 0.67), moderate (having a value of 0.33) and weak (having a value of 0.19) [9]. The Original Sample Estimate value shows the direction of the influence of the independent variable on the dependent variable. A positive value in the Original Sample Estimate indicates that the independent variable has a positive effect on the dependent variable, but a negative value indicates that the independent variable has a negative effect or vice versa on the dependent variable.
- 2) The value of T Statistics shows a significant effect of the independent variable on the dependent variable. The independent variable is declared to have a significant effect on the dependent variable if the T statistic value shows a number more than 1.9 [9]. This hypothesis test is carried out by looking at the significance value of the p-value with a significance level of 5% (one way). The significance of the relationship between exogenous and endogenous latent variables is seen from the magnitude of the t-statistic or t-count and p-value. If the t-statistical value > 1.96 and p-value < 0.05 then it can be interpreted as significant (the hypothesis is accepted) and if the t-statistic value is < 1.96 and p-value > 0.05 it is said to be insignificant (hypothesis is not accepted).)

3. RESULTS AND DISCUSSION

3.1 Measurement Model (Outer Model)

The initial calculation of the PLS is done through the evaluation of the outer model. Outer model or measurement model is a stage to evaluate the validity and reliability of a construct. There are two construct validity tests in the PLS measurement model, namely convergent validity and discriminant validity. The outer model was evaluated using the parameters AVE, community, outer loading, cross loading, cronbach alpha, and composite reliability (Cahyonowati et al., 2011).

a. Validity Test

Validity is intended to measure the extent to which the variable being measured is used to actually measure what it is supposed to measure. Testing the validity in this study using a convergent validity test and discriminant validity test. At this stage, it is done by looking at the standardizing loading factor, composite reliability, average variance extract (AVE), and discriminant validity through checking the cross-loading value. The valid loading factor value is above 0.7. The Composite Reliability (CR) value is valid above 0.7. While the valid AVE value is above 0.5. If the loading score < 0.70 then this indicator can be removed from the construct because the indicator is not loaded into the construct that represents it [8]. Based on the data in table 4, all question items have a loading value greater than 0.7. These results indicate that the data is valid.

The results of the validity test show that the four variable indicators have a Factor Loading value of less than 0.7. Among the questionnaires that were declared invalid were SI3, SI4, FC3 and FC4. The four indicator variables have each factor loading value of 0.546; 0.604; 0.693 and 0.529. The results of the validity test after the four indicator variables are removed. Table 3 shows that all questionnaires are declared valid because they have a Factor Loading value above 0.7. UB3 has the smallest Factor Loading value of 0.705. Furthermore, the results of the reliability test were carried out. The results of the reliability test are shown in Table 4.

Table 4. Validity Test Results

Indikator Variabe	Nilai Factor Loading	Hasil Uji Validitas
PE1	0.973	Valid
PE2	0.977	Valid
EE1	0.788	Valid
EE2	0.796	Valid
EE3	0.834	Valid
EE4	0.825	Valid
EE5	0.758	Valid
SI1	0.742	Valid
SI2	0.956	Valid
FC1	0.9	Valid
FC2	0.86	Valid
Hb1	0.71	Valid
Hb2	0.944	Valid
Hb3	0.921	Valid
BI1	0.875	Valid
BI2	0.943	Valid
BI3	0.942	Valid
BI4	0.844	Valid
UB1	0.816	Valid
UB2	0.886	Valid
UB3	0.876	Valid

b. Reliability Test Results

The reliability test in this study can be done using two methods, namely Cronbach's alpha and Composite reliability. According to Jogyianto (2011) the rule of thumb of Cronbach's alpha and Composite reliability must be greater than 0.7 although 0.6 is still acceptable. If both have met the requirements, namely having a value greater than 0.7 then the data is reliable. In this study, the reliability test can be seen from composite reliability and Cronbach's alpha in Table 4 which shows that the composite reliability value for all constructs is above 0.70 even though in Cronbach's alpha there are two constructs that have a value of 0.6 but are still acceptable. Therefore, it can be concluded that all constructs in this study are reliable or meet the reliability test. Table 5 below shows the value of Cronbach's alpha and composite reliability.

Table 5. Reliability Test Results

Variable Indicator	Composite Reliability Value	Reliability Test Results
PE	0,975	Reliabel
EE	0,8002	Reliabel
SI	0,849	Reliabel
FC	0,88	Reliabel
HM	0,792	Reliabel
Hb	0,858	Reliabel
BI	0,901	Reliabel
UB	0,82075	Reliabel

In Table 4 it can be seen that all Composite Reliability values show numbers greater than 0.6. The smallest Composite Reliability value is the Hedonic Motivation variable of 0.792. These results indicate that all research variables are stated to be reliable or consistent. The results of using a valid and reliable questionnaire show that the questionnaire as data collection to test the hypothesis is feasible [24].

3.2 Structural Model (Inner Model)

After the measurement model is carried out to assess the validity and reliability, then the structural model testing (inner model) is carried out. The structural model in PLS is evaluated using R2. The percentage

of influence of all independent variables on the value of the dependent variable is indicated by the magnitude of the coefficient of determination R-Square (R²) between one and zero, where the value of R² which is close to one gives a large percentage of influence [12]. The following is the value of R² in the construct that will be presented in Table 5. The results of calculations using the SmartPLS 3.3.3 software show the results as shown in Fig.

Table 6. Composite Reliability Results

Variabel	R Square
Usage Interest	0,56
Usage Behavior	0,328

Based on Table 6, from the value obtained, the category of the magnitude of the influence of the independent variable on the dependent variable is moderate for the independent variable on BI and weak for the BI variable on UB. The independent variable is declared to have a significant effect on the dependent variable if the T statistic value shows a number more than 1, 9 [23]

3.3 Hypothesis Testing

After knowing the R² of the proposed model, the next process is hypothesis testing. Hypothesis testing is done by looking at the t-statistical value to determine the significance value of the model, and the original sample which is the beta score is used to see the predictive nature of exogenous variables on endogenous variables [11]. The positive value of the beta coefficient indicates the nature of the positive influence, while the negative value indicates the negative effect of exogenous variables on endogenous variables. Data analysis was carried out for hypothesis testing in this study using the bootstrap resampling method with the help of the SmartPLS 3.3.3 program. The following are the results of hypothesis testing.

Table 7. Value of Influence of Independent Variables on Dependent Variables

Variable Indicator	Original sample value	Static T Value	Information
PE -> BI	0,543	4,181	Significant Positive
EE -> BI	0,11	0,799	Positive Not Significant
SI -> BI	0,018	0,169	Positive Not Significant
FC -> BI	0,0482	3,947	Significant Positive
HM -> BI	0,119	1,472	Positive Not Significant
Hb -> BI	0,16	0,255	Positive Not Significant
BI -> UB	0,477	3,517	Significant Positive

Information :

PE=Performance Expectancy

EE=Effort Expectancy

SI=Social Influence

FC=Facilitating Conditions

HM=Hedonic Motivation

Hb=Habit

BI=Behavioral Intentions

UB=Use Behaviors

Decision-making:

1. T-statistic value > 1.96 (Hypothesis Accepted)
2. T-statistic value < 1.96 (Hypothesis Rejected)

3.4 Discussion of Research Results

a. The Effect of Performance Expectancy (PE) on Behavioral Intentions (BI) Performance TanselPay.

Based on the results of testing hypothesis 1 (H1), it shows that the value of the original sample owned by the performance expectation variable on the interest in using variable is 0.543, which means that the performance expectation variable has a positive effect on interest in use. After that, the t-statistic value is 4.181 > 1.96. This shows that the PE variable has a significant effect on the BI variable until the first hypothesis is supported. This is in line with the research conducted by Venkatesh et al. which states that the PE variable affects the BI of a system [6]. Performance expectations are measured by the benefits, achievements, productivity, and efficiency that users can get when using the system. These results mean that the use of TanselPay can be useful and can help complete work, and can help improve the quality of performance, so that it affects interest in using TanselPay.

b. Effect of Effort Expectancy (EE) on TangselPay Behavioral Intentions (BI).

Based on the results of testing hypothesis 2 (H2), it shows that the value of the original sample owned by the EE variable in the BI variable is 0.11 which means that the business expectation variable does not have a positive effect on the interest in using variable. After that, the t-statistic value is $0.799 < 1.96$. This shows that the EE variable has no significant effect on the BI variable until the second hypothesis is not supported. This variable is measured by the ease and perception felt by the user, as well as the complexity of the system when used. This can happen because the system has complex features that make it difficult for employees to understand and use the system.

c. The Effect of Social Influence (SI) on TangselPay's Behavioral Intentions (BI).

Based on the results of testing hypothesis 3 (H3), it shows that the original sample value of the SI variable is 0.018, which means that the SI variable has no positive effect on the BI variable. After that, the t-statistic value of $0.169 < 1.96$ was obtained. This shows that the social factor variable does not have a significant effect on the interest in using variable until the third hypothesis is not supported. Social factors are measured based on user opinions about how much influence other people have and the image obtained when using the system. Based on direct observations made by researchers, although market traders managed by the government are required to use TangselPay, users may not feel any influence on their use of TangselPay.

d. The Effect of Facilitating Conditions (FC) on TangselPay's Behavioral Intentions (BI)

Based on the results of hypothesis testing 4 (H4), the value of the original sample owned by the FC variable on BI is 0.0482, which means that the FC variable has a positive impact on the variable interest in use. After that, the tstatistic value was $3,947 < 1.96$. This shows that the FC variable has a significant effect on the BI variable until the fourth hypothesis is supported. Facilitating conditions are measured from the user's condition such as knowledge, resources, assistance, and facilities provided. This result is probably due to someone's belief in the existence of a technical device that will support the use of a system. Users have the necessary resources (eg smartphones) to use TangselPay Meanwhile, not all users have the necessary knowledge to use *ekinerja*.

e. The Influence of Hedonic Motivation (HM) on TangselPay's Behavioral Intentions (BI)

Based on the results of testing hypothesis 5 (H5), it shows that the original sample value of the HM variable at BI is 0.119, which means that the hedonic motivation variable does not have a positive effect on the interest to use variable. After that the tstatistic value is $1.472 < 1.96$. This shows that the hedonic motivation variable has no significant effect on the interest in using variable until the fifth hypothesis is not supported. Hedonic motivation is measured based on when using a system such as happy, proud, or increasing self-achievement. This can happen because this system is not intended for mere entertainment, but only to facilitate merchants in terms of payment. To increase this variable, it is necessary to increase the frequency of system feature and display updates. With the improvement of appearance and features, it is expected to increase the interest and convenience of employees in using the system. The more employees can feel comfortable and confident, it is hoped that this will increase their interest in using TangselPay.

f. The Effect of Habit (Hb) on Behavioral Intentions (Bi) TangselPay

Based on the results of testing hypothesis 6 (H6) shows that the value of the original sample owned by the Hb variable in UB is 0.16, which means that the habit variable does not have a positive effect on the interest in using variable. After that, the t-statistic value is $0.255 < 1.96$. This shows that the habit variable has no significant effect on the variable of interest in using until the sixth hypothesis is not supported. Habit is defined as the extent to which a person tends to behave automatically if he is accustomed to using a system. This may be because although users are required to use performance, if they have not mastered the system, it will have an impact on user interest.

g. The Influence of Behavioral Intentions (BI) on TangselPay's Use Behavior (UB)

Based on the results of testing hypothesis 7 (H7), it shows that the original sample value of the BI variable on usage behavior is 0.477, which means that the habit variable has a positive effect on UB. After that, the t-statistic value is $3,517 > 1.96$. This shows that the variable of interest in use has a significant effect on the variable of usage behavior until the eighth hypothesis is supported. This can be proven from the independent variable Performance Expectations which gets the highest score among other independent variables related to the dependent variable of interest in using that TangselPay is very useful and improves work quality and is also strengthened by North Sulawesi Provincial Government employees who are required to use TangselPay in every work process. Therefore, it can be concluded that usage interest has an effect on usage behavior.

4. CONCLUSION

Based on the results of testing the 7 hypotheses accepted in this study, 3 are PE -> BI, FC->BI and BI->UB which have values above the threshold > 1.96 while the 4 rejected hypotheses are EE->BI, SI -> BI, HM->BI and Hb->UB because these 4 hypotheses are below the threshold < 1.96 so that the factors that significantly influence the behavioral interest of merchants to use TangselPay are as follows Performance expectations (PE) affect interest in using (BI), facilitation condition (FC) affects interest in using (BI), interest in using (BI) affects usage behavior (UB). The results of this study indicate that the variable with the greatest influence is performance expectations (PE). Higher to use TangselPay. Usage behavior is a real action taken by individuals, namely the behavior of using the system will increase if the facilitation conditions are better or ideal, thus the provision of adequate organizational and technical infrastructure will have an impact on increasing the use of TangselPay. Ideal facilitation conditions to support the use of the system in the form of assistance from facilitators or special personnel if problems occur in the use of TangselPay, as well as the implementation of training or technical guidance will improve behavior using TangselPay. In addition to facilitating conditions, strong behavioral intentions will also increase behavior using the system.

TangselPay is an application that is required by the South Tangerang City Government to be used by taxpayers, thus all users must use the system, but that does not mean that there are no variations in the use of the system so that it cannot be predicted. This is as expressed by Harwick and Barki (1994) in Hartono (2008) who argue that mandatory use behavior is also very varied. Mandatory use is behavior under one's control based on normative or imperative considerations. Users must be able to choose to use the system or not in the form of arguing with their superiors, or not fully use the system if they feel the system is useless or if there is no supervision. It can be concluded that mandatory use can lead to different levels of system usage among system users

5. REFERENCE (10 PT)

- [1] Kumari, N. and J. Khanna, 2017. Cashless payment: A behavioural change to economic growth. Qualitative and Quantitative Research Review, 2(2): 82–103.
- [2] Tee, Hock Han dan Hway Boon Ong. 2016. Cashless Payment and Economic Growth. Economics Unit, Faculty of Management, Multimedia University, Persiaran Multimedia, Cyberjaya, Malaysia.
- [3] anri,"citra kota tangerang selatan ",Retrieved on Januari 2013 from : <https://www.anri.go.id/download/naskah-sumber-arsip-citra-daerah-kota-tangerang-selatan-dalam-arsip-1586393818>.
- [4] detikNews,"Airin Luncurkan TangselPay, Fintech untuk Bayar Pajak & Retribusi", Retrieved 08 Okt 2019 from <https://news.detik.com/berita/d-4738826/airin-luncurkan-tangselpay-fintech-untuk-bayar-pajak--retribusi>.
- [5] V. Venkatesh, J. Thong, and X. Xu, "Consumer Acceptance and Use of Information Technology: Extending the Unified Theory of Acceptance and Use of Technology", MIS Quarterly, 36 (1), 157-178, 2012.
- [6] Indrawati and D. Anggarini, "Analyzing factors influencing continuance intention of e-payment adoption using modified UTAUT 2 model", 2018 6th International Conference on Information and Communication Technology (ICoICT), Malaysia.
- [7] Bougie, & Sekaran. (2013). Edisi 5, Research Methods for Business: A skill Building Approach. New York: John wiley& Sons.
- [8] Indrawati, "Metode Penelitian Manajemen dan Bisnis, Konvergensi Teknologi Komunikasi dan Bisnis", Bandung Indonesia: PT Refika Aditama. 2015.
- [9] Indrawati, "Perilaku Konsumen Individu", Bandung Indonesia: PT Refika Aditama, 2017.
- [10] Sugiyono. (2013). Metodologi Penelitian Kombinasi (Mixed Methode). Bandung: Alfabeta
- [11] Jogyianto. 2011. Konsep dan Aplikasi Structural Equation Modeling (SEM) Berbasis Varians dalam Penelitian Bisnis. STIM YKPN, Yogyakarta
- [12] Ghozali, I. dan Fuad. 2008. Structural Equation Modeling. Semarang: Universitas Diponegoro.
- [13] D. R. Sari, "Pengaruh Dimensi Budaya Terhadap Perilaku Penggunaan E-Commerce: Daerah Istimewa Yogyakarta dan Kalimantan Timur," Universitas Islam Indonesia, 2018.
- [14] N. Auliya, "Penerapan Model Unified Theory of Acceptance and Use Of Technology 2 Terhadap Minat dan Perilaku Penggunaan E-Ticket di Yogyakarta," Universitas Islam Indonesia, 2018.
- [15] R. Mustaqim, A. Kusyanti, and H. Aryadita, "Analisis Faktor-Faktor yang Memengaruhi Niat Penggunaan E-Commerce XYZ Menggunakan Model UTAUT (Unified Theory Acceptance and Use Of Technology)," J. Pengemb. Teknol. Inf. dan Ilmu Komput., vol. 2, no. 7, pp. 2584–2593, 2018.
- [16] F. D. Davis, "Perceived Usefulness, Perceived Ease of Use, and User Acceptance of Information Technology," MIS Q., vol. 13, no. 0, pp. 319–340, 1989.

- [17] W. H. DeLone and E. R. McLean, "The DeLone and McLean Model of Information System Success," *J. Manag. Inf. Syst.*, vol. 19, no. 4, pp. 9–30, 2003.
- [18] V. Venkatesh and F. D. Davis, "A Theoretical Extension of the Technology Acceptance Model : Four Longitudinal," *Manage. Sci.*, vol. 42, no. 2, pp. 186–204, 2000.
- [19] N. Nyembezi and A. Bayaga, "Performance Expectancy and Usage of Information Systems and Technology: Cloud Computing (PEUISTCC)," *Int. J. Educ. Sci.*, vol. 7, no. 3, pp. 579–586, Nov. 2014.
- [20] Hertanto, Eko. 2017. Perbedaan Skala Likert Lima Skala dengan Modifikasi Skala Likert Empat Skala. *Jurnal Metodologi Penelitian* September 2017.